Skip to main content
Top

2023 | OriginalPaper | Chapter

Optimization and Solution Approaches in Utilizing Wireless Sensor Networks for Exploring Moon, Planets, and Space

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The technological improvements in small electromechanical systems and wireless communication technologies have provided an opportunity to use wireless sensor networks (WSNs) in space applications and to explore the Moon, planets, natural moons of the planets, or asteroids. Humankind has sent humans, vehicles, satellites, and rovers to space to discover the Moon, planets, and even asteroids. WSNs can be an excellent choice for collecting and processing vital physical data including temperature, seismic, visual, infrared, light, pressure, radiation, and gas data, among others about target space objects. Therefore, this chapter analyzes applications and studies of WSN use to explore the Moon, planets, and space, and it summarizes the literature. The optimization and solution methodologies in studies are presented, and opportunities and challenges of using WSNs in space-based missions are reviewed. In brief, the environments on different planets or on other space bodies can be highly compelling for such instruments. Therefore, there are still many subjects to be studied by researchers and scientists, and as such, the capabilities and communication skills of sensors must be adapted to space applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Akyildiz IF, Su W, Sankarasubramaniam Y et al (2002) Wireless sensor networks: A survey. Computer Networks 38:393–422CrossRef Akyildiz IF, Su W, Sankarasubramaniam Y et al (2002) Wireless sensor networks: A survey. Computer Networks 38:393–422CrossRef
[2]
go back to reference Yick J, Mukherjee B, Ghosal D (2008) Wireless sensor network survey. Computer Networks 52:2292–2330CrossRef Yick J, Mukherjee B, Ghosal D (2008) Wireless sensor network survey. Computer Networks 52:2292–2330CrossRef
[3]
go back to reference Solaiman B, Sheta A (2013) Computational intelligence for wireless sensor networks: Applications and clustering algorithms. International Journal of Computer Applications 73(15):1–8CrossRef Solaiman B, Sheta A (2013) Computational intelligence for wireless sensor networks: Applications and clustering algorithms. International Journal of Computer Applications 73(15):1–8CrossRef
[4]
go back to reference Virmani D, Soni A, Chandel S et al (2014) Routing attacks in wireless sensor networks: A survey. International Journal of Computer Science and Information Technologies 5(2):2665–2671 Virmani D, Soni A, Chandel S et al (2014) Routing attacks in wireless sensor networks: A survey. International Journal of Computer Science and Information Technologies 5(2):2665–2671
[5]
go back to reference Mohamed SM, Hamza HS, Saroit IA (2017) Coverage in mobile wireless sensor networks (M-WSN): A survey. Computer Communications 110:133–150CrossRef Mohamed SM, Hamza HS, Saroit IA (2017) Coverage in mobile wireless sensor networks (M-WSN): A survey. Computer Communications 110:133–150CrossRef
[6]
go back to reference Prasad P (2015) Recent trend in wireless sensor network and its applications: A survey. Sensor Review 35(2):229–236CrossRef Prasad P (2015) Recent trend in wireless sensor network and its applications: A survey. Sensor Review 35(2):229–236CrossRef
[7]
go back to reference Singh MK, Amin SI, Imam SA et al (2018) A survey of wireless sensor network and its types. In: International Conference on Advances in Computing, Communication Control and Networking, Greater Noida, India, 12–13 October 2018 Singh MK, Amin SI, Imam SA et al (2018) A survey of wireless sensor network and its types. In: International Conference on Advances in Computing, Communication Control and Networking, Greater Noida, India, 12–13 October 2018
[8]
go back to reference Pabari JP, Acharya YB, Desai UB (2009) Investigation of wireless sensor deployment schemes for in-situ measurement of water ice near lunar south pole. Sensors & Transducers Journal 111(12):86–105 Pabari JP, Acharya YB, Desai UB (2009) Investigation of wireless sensor deployment schemes for in-situ measurement of water ice near lunar south pole. Sensors & Transducers Journal 111(12):86–105
[9]
go back to reference Pabari JP, Acharya YB, Desai UB et al (2010) Radio frequency modelling for future wireless sensor network on surface of the moon. International Journal of Communications, Network and System Sciences 3:395–401CrossRef Pabari JP, Acharya YB, Desai UB et al (2010) Radio frequency modelling for future wireless sensor network on surface of the moon. International Journal of Communications, Network and System Sciences 3:395–401CrossRef
[10]
go back to reference Prasad KD, Murty SVS (2011) Wireless sensor networks – A potential tool to probe for water on moon. Advances in Space Research 48:601–612CrossRef Prasad KD, Murty SVS (2011) Wireless sensor networks – A potential tool to probe for water on moon. Advances in Space Research 48:601–612CrossRef
[11]
go back to reference Pabari JP, Acharya YB, Desai UB et al (2013) Concept of wireless sensor network for future in-situ exploration of lunar ice using wireless impedance sensor. Advances in Space Research 52:321–331CrossRef Pabari JP, Acharya YB, Desai UB et al (2013) Concept of wireless sensor network for future in-situ exploration of lunar ice using wireless impedance sensor. Advances in Space Research 52:321–331CrossRef
[12]
go back to reference Zhai X, Vladimirova T (2015) Data aggregation in wireless sensor networks for lunar exploration. In: Sixth International Conference on Emerging Security Technologies, Braunschweig, Germany, 03–05 September 2015 Zhai X, Vladimirova T (2015) Data aggregation in wireless sensor networks for lunar exploration. In: Sixth International Conference on Emerging Security Technologies, Braunschweig, Germany, 03–05 September 2015
[13]
go back to reference Lopez-Matencio P (2016) An ACOR-based multi-objective WSN deployment example for lunar surveying. Sensors 16(209):1–20 Lopez-Matencio P (2016) An ACOR-based multi-objective WSN deployment example for lunar surveying. Sensors 16(209):1–20
[14]
go back to reference Parrado-Garcia FJ, Vales-Alonso J, Alcaraz JJ (2017) Optimal planning of WSN deployments for in situ lunar surveys. IEEE Transactions on Aerospace and Electronic Systems 53(4):1866–1879CrossRef Parrado-Garcia FJ, Vales-Alonso J, Alcaraz JJ (2017) Optimal planning of WSN deployments for in situ lunar surveys. IEEE Transactions on Aerospace and Electronic Systems 53(4):1866–1879CrossRef
[15]
go back to reference Ozkan O (2020) Wireless sensor deployment on 3-D surface of moon to maximize coverage by using a hybrid memetic algorithm. Uludağ University Journal of the Faculty of Engineering 25(1):303–324 Ozkan O (2020) Wireless sensor deployment on 3-D surface of moon to maximize coverage by using a hybrid memetic algorithm. Uludağ University Journal of the Faculty of Engineering 25(1):303–324
[16]
go back to reference Duboisa P, Botteron C, Mitev V et al (2009) Ad hoc wireless sensor networks for exploration of solar-system bodies. Acta Astronautica 64:626–643CrossRef Duboisa P, Botteron C, Mitev V et al (2009) Ad hoc wireless sensor networks for exploration of solar-system bodies. Acta Astronautica 64:626–643CrossRef
[18]
go back to reference Coustenis A, Lunine J, Lebreton J-P et al (2009) Earth-based support for the Titan Saturn system mission. Earth Moon Planet 105:135–142CrossRef Coustenis A, Lunine J, Lebreton J-P et al (2009) Earth-based support for the Titan Saturn system mission. Earth Moon Planet 105:135–142CrossRef
[19]
go back to reference Mocquet A, Rosenblatt P, Dehant V et al (2011) The deep interior of Venus, Mars, and the Earth: A brief review and the need for planetary surface-based measurements. Planetary and Space Science 59:1048–1061CrossRef Mocquet A, Rosenblatt P, Dehant V et al (2011) The deep interior of Venus, Mars, and the Earth: A brief review and the need for planetary surface-based measurements. Planetary and Space Science 59:1048–1061CrossRef
[20]
go back to reference Launius RD (2012) Venus-Earth-Mars: Comparative climatology and the search for life in the solar system. Life 2:255–273CrossRef Launius RD (2012) Venus-Earth-Mars: Comparative climatology and the search for life in the solar system. Life 2:255–273CrossRef
[21]
go back to reference Lorenz RD (2012) Planetary seismology—expectations for lander and wind noise with application to Venus. Planetary and Space Science 62:86–96CrossRef Lorenz RD (2012) Planetary seismology—expectations for lander and wind noise with application to Venus. Planetary and Space Science 62:86–96CrossRef
[22]
go back to reference Edberg NJT, Andrews DJ, Agren K et al (2013) Space weather at Venus, Mars and Titan. In: European Planetary Science Congress, London, United Kingdom, 08–13 September 2013 Edberg NJT, Andrews DJ, Agren K et al (2013) Space weather at Venus, Mars and Titan. In: European Planetary Science Congress, London, United Kingdom, 08–13 September 2013
[23]
go back to reference Greenwood JP, Karato S-i, Kaaden KEV et al (2018) Water and volatile inventories of Mercury, Venus, the Moon, and Mars. Space Science Reviews 214(92):1–39 Greenwood JP, Karato S-i, Kaaden KEV et al (2018) Water and volatile inventories of Mercury, Venus, the Moon, and Mars. Space Science Reviews 214(92):1–39
[24]
go back to reference Garg K, Kuhn T (2020) Balloon design for Mars, Venus, and Titan atmospheres. Applied Sciences 10(3204):1–25 Garg K, Kuhn T (2020) Balloon design for Mars, Venus, and Titan atmospheres. Applied Sciences 10(3204):1–25
[25]
go back to reference Trebi-Ollennu A, Huntsberger T, Cheng Y et al (2001) Design and analysis of a sun sensor for planetary rover absolute heading detection. IEEE Transactions on Robotics and Automation 17(6):939:947 Trebi-Ollennu A, Huntsberger T, Cheng Y et al (2001) Design and analysis of a sun sensor for planetary rover absolute heading detection. IEEE Transactions on Robotics and Automation 17(6):939:947
[26]
go back to reference Sun T, Chen L-J, Han C-C et al (2005) Reliable sensor networks for planet exploration. In: 4th International Conference on Networking, Reunion Island, France, 17–21 April 2005 Sun T, Chen L-J, Han C-C et al (2005) Reliable sensor networks for planet exploration. In: 4th International Conference on Networking, Reunion Island, France, 17–21 April 2005
[27]
go back to reference Gaura E, Newman RM (2006) Wireless sensor networks: The quest for planetary field sensing. In: 31st IEEE Conference on Local Computer Networks, Tampa, FL, USA, 14–16 November 2006 Gaura E, Newman RM (2006) Wireless sensor networks: The quest for planetary field sensing. In: 31st IEEE Conference on Local Computer Networks, Tampa, FL, USA, 14–16 November 2006
[28]
go back to reference Medina A, de Negueruela C, Mollinedo L et al (2010) Wireless sensor web for rover planetary exploration. In: 10th International Symposium on Artificial Intelligence, Robotics and Automation in Space, Sapporo, Japan, 29 August – 01 September 2010 Medina A, de Negueruela C, Mollinedo L et al (2010) Wireless sensor web for rover planetary exploration. In: 10th International Symposium on Artificial Intelligence, Robotics and Automation in Space, Sapporo, Japan, 29 August – 01 September 2010
[29]
go back to reference Pabari JP, Acharya YB, Desai UB (2012) Development of impedance-based miniaturized wireless water ice sensor for future planetary applications. IEEE Transactions on Instruments and Measurement 61(2):521–529CrossRef Pabari JP, Acharya YB, Desai UB (2012) Development of impedance-based miniaturized wireless water ice sensor for future planetary applications. IEEE Transactions on Instruments and Measurement 61(2):521–529CrossRef
[30]
go back to reference Prasad KD, Bhattacharya A, Murty SVS (2012) An ambient light sensing module for wireless sensor networks for planetary exploration. Planetary and Space Science 70:10–19CrossRef Prasad KD, Bhattacharya A, Murty SVS (2012) An ambient light sensing module for wireless sensor networks for planetary exploration. Planetary and Space Science 70:10–19CrossRef
[31]
go back to reference Sanz D, Barrientos A, Garzon M et al (2013) Wireless sensor networks for planetary exploration: Experimental assessment of communication and deployment. Advances in Space Research 52:1029–1046CrossRef Sanz D, Barrientos A, Garzon M et al (2013) Wireless sensor networks for planetary exploration: Experimental assessment of communication and deployment. Advances in Space Research 52:1029–1046CrossRef
[32]
go back to reference Rodrigues P, Oliveira A, Alvarez F et al (2014) Space wireless sensor networks for planetary exploration: Node and network architectures. In: NASA/ESA Conference on Adaptive Hardware and Systems, Leicester, United Kingdom, 14–17 July 2014 Rodrigues P, Oliveira A, Alvarez F et al (2014) Space wireless sensor networks for planetary exploration: Node and network architectures. In: NASA/ESA Conference on Adaptive Hardware and Systems, Leicester, United Kingdom, 14–17 July 2014
[33]
go back to reference Sergiou C, Paphitis A, Panagiotou C et al (2014) Wireless sensor networks for planetary exploration: Issues and challenges through a specific application. In: SpaceOps 2014 Conference, Pasadena, CA, JSA, 05–09 May 2014 Sergiou C, Paphitis A, Panagiotou C et al (2014) Wireless sensor networks for planetary exploration: Issues and challenges through a specific application. In: SpaceOps 2014 Conference, Pasadena, CA, JSA, 05–09 May 2014
[35]
go back to reference Zhai X, Vladimirova T (2016) Efficient data-processing algorithms for wireless-sensor-networks-based planetary exploration. Journal of Aerospace Information Systems, 13(1):46–66CrossRef Zhai X, Vladimirova T (2016) Efficient data-processing algorithms for wireless-sensor-networks-based planetary exploration. Journal of Aerospace Information Systems, 13(1):46–66CrossRef
[36]
go back to reference Oddi G, Pietrabissa A, Liberati F et al (2017) An any-sink energy-efficient routing protocol in multi-hop wireless sensor networks for planetary exploration. International Journal of Communication Systems 30(e3020):1–25 Oddi G, Pietrabissa A, Liberati F et al (2017) An any-sink energy-efficient routing protocol in multi-hop wireless sensor networks for planetary exploration. International Journal of Communication Systems 30(e3020):1–25
[37]
go back to reference Ulmer C, Yalamanchili S, Alkalai L (2000) Wireless distributed sensor networks for in-situ exploration of Mars. NASA Technical Report http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.324&rep=rep1&type=pdf Accessed 24 February 2021 Ulmer C, Yalamanchili S, Alkalai L (2000) Wireless distributed sensor networks for in-situ exploration of Mars. NASA Technical Report http://​citeseerx.​ist.​psu.​edu/​viewdoc/​download?​doi=​10.​1.​1.​116.​324&​rep=​rep1&​type=​pdf Accessed 24 February 2021
[38]
go back to reference Hong X, Gerla M, Bagrodia R et al (2001) The Mars sensor network: Efficient, energy aware communications. In: MILCOM Proceedings Communications for Network-Centric Operations, McLean, VA, USA, 28–31 October 2001 Hong X, Gerla M, Bagrodia R et al (2001) The Mars sensor network: Efficient, energy aware communications. In: MILCOM Proceedings Communications for Network-Centric Operations, McLean, VA, USA, 28–31 October 2001
[39]
go back to reference Hong X, Gerla M, Wang H et al (2002) Load balanced, energy-aware communications for Mars sensor networks. In: IEEE Aerospace Conference, Big Sky, MT, USA, 09–16 March 2002 Hong X, Gerla M, Wang H et al (2002) Load balanced, energy-aware communications for Mars sensor networks. In: IEEE Aerospace Conference, Big Sky, MT, USA, 09–16 March 2002
[40]
go back to reference Del Re E, Pucci R, Ronga LS (2009) IEEE802.15.4 wireless sensor network in Mars exploration scenario. In: International Workshop on Satellite and Space Communications, Siena, Italy, 09–11 September 2009 Del Re E, Pucci R, Ronga LS (2009) IEEE802.15.4 wireless sensor network in Mars exploration scenario. In: International Workshop on Satellite and Space Communications, Siena, Italy, 09–11 September 2009
[41]
go back to reference Pucci R, Ronga LS, Del Re E et al (2009) Performance evaluation of an IEEE802.15.4 standard based wireless sensor network in Mars exploration scenario. In: 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, Aalborg, Denmark, 17–20 May 2009 Pucci R, Ronga LS, Del Re E et al (2009) Performance evaluation of an IEEE802.15.4 standard based wireless sensor network in Mars exploration scenario. In: 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, Aalborg, Denmark, 17–20 May 2009
[42]
go back to reference Prasad KD (2019) CubeSats aided wireless sensor networks for exploration of Mars and Venus. In: URSI Asia-Pacific Radio Science Conference, New Delhi, India, 09–15 March 2019 Prasad KD (2019) CubeSats aided wireless sensor networks for exploration of Mars and Venus. In: URSI Asia-Pacific Radio Science Conference, New Delhi, India, 09–15 March 2019
[43]
go back to reference Ponchak GE, Scardelletti MC, Taylor B et al (2012) High temperature, wireless seismometer sensor for Venus. In: IEEE Topical Conference on Wireless Sensors and Sensor Networks, Santa Clara, CA, USA, 15–18 January 2012 Ponchak GE, Scardelletti MC, Taylor B et al (2012) High temperature, wireless seismometer sensor for Venus. In: IEEE Topical Conference on Wireless Sensors and Sensor Networks, Santa Clara, CA, USA, 15–18 January 2012
[45]
go back to reference Glaze LS, Wilson CF, Zasova LV et al (2018) Future of Venus research and exploration. Space Science Reviews 214(89):1–37 Glaze LS, Wilson CF, Zasova LV et al (2018) Future of Venus research and exploration. Space Science Reviews 214(89):1–37
[46]
go back to reference Clare LP, Gao JL, Jenning EH et al (2004) Communications architecture for space-based sensor networks. In: IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 06–13 March 2004 Clare LP, Gao JL, Jenning EH et al (2004) Communications architecture for space-based sensor networks. In: IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 06–13 March 2004
[47]
go back to reference Wilson W, Atkinson G (2008) Wireless sensing opportunities for aerospace applications. Sensors & Transducers Journal 94(7):83–90 Wilson W, Atkinson G (2008) Wireless sensing opportunities for aerospace applications. Sensors & Transducers Journal 94(7):83–90
[48]
go back to reference Vladimirova T, Wu X, Bridges CP (2008) Development of a satellite sensor network for future space missions. In: IEEE Aerospace Conference, Big Sky, MT, USA, 01–08 March 2008 Vladimirova T, Wu X, Bridges CP (2008) Development of a satellite sensor network for future space missions. In: IEEE Aerospace Conference, Big Sky, MT, USA, 01–08 March 2008
[49]
go back to reference Vladimirova T, Bridges CP, Paul JR et al (2010) Space-based wireless sensor networks: Design issues. In: IEEE Aerospace Conference, Big Sky, MT, USA, 06–13 March 2010 Vladimirova T, Bridges CP, Paul JR et al (2010) Space-based wireless sensor networks: Design issues. In: IEEE Aerospace Conference, Big Sky, MT, USA, 06–13 March 2010
[50]
go back to reference Sun R, Guo J, Gill EKA (2010) Opportunities and challenges of wireless sensor networks in space. In: 61st International Astronautical Congress, Prague, CZ, 27 September – 01 October 2010 Sun R, Guo J, Gill EKA (2010) Opportunities and challenges of wireless sensor networks in space. In: 61st International Astronautical Congress, Prague, CZ, 27 September – 01 October 2010
[51]
go back to reference Wagner RS (2010) Standards-based wireless sensor networking protocols for spaceflight applications. In: IEEE Aerospace Conference, Big Sky, MT, USA, 06–13 March 2010 Wagner RS (2010) Standards-based wireless sensor networking protocols for spaceflight applications. In: IEEE Aerospace Conference, Big Sky, MT, USA, 06–13 March 2010
[52]
go back to reference Wilson W, Atkinson G (2011a) Wireless sensors for space applications. Sensors & Transducers Journal 13:1–9 Wilson W, Atkinson G (2011a) Wireless sensors for space applications. Sensors & Transducers Journal 13:1–9
[53]
go back to reference Wilson WC, Atkinson GM (2011a) Space applications for wireless sensors. In: NSTI Nanotechnology Conference & Expo, Boston, MA, USA, 13–16 June 2011 Wilson WC, Atkinson GM (2011a) Space applications for wireless sensors. In: NSTI Nanotechnology Conference & Expo, Boston, MA, USA, 13–16 June 2011
[54]
go back to reference Wagner RS, Barton RJ (2012) Performance comparison of wireless sensor network standard protocols in an aerospace environment: ISA100.11a and ZigBee Pro. In: IEEE Aerospace Conference, Big Sky, MT, USA, 03–10 March 2012 Wagner RS, Barton RJ (2012) Performance comparison of wireless sensor network standard protocols in an aerospace environment: ISA100.11a and ZigBee Pro. In: IEEE Aerospace Conference, Big Sky, MT, USA, 03–10 March 2012
[55]
go back to reference Gowda CH, Prakruthi MK (2014) Wireless sensor networks for space and solar-system missions. International Journal of Engineering Research & Technology 2(13):395–400 Gowda CH, Prakruthi MK (2014) Wireless sensor networks for space and solar-system missions. International Journal of Engineering Research & Technology 2(13):395–400
[56]
go back to reference Kesuma H, Ahmadi-Pour S, Zimmerman H-J et al (2019) Ultrasonic wireless sensor network for human habitation in deep space mission. In: IEEE International Conference on Wireless for Space and Extreme Environments, Ottawa, ON, Canada, 16–18 October 2019 Kesuma H, Ahmadi-Pour S, Zimmerman H-J et al (2019) Ultrasonic wireless sensor network for human habitation in deep space mission. In: IEEE International Conference on Wireless for Space and Extreme Environments, Ottawa, ON, Canada, 16–18 October 2019
Metadata
Title
Optimization and Solution Approaches in Utilizing Wireless Sensor Networks for Exploring Moon, Planets, and Space
Author
Omer Ozkan
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-24812-2_10

Premium Partner