Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

5. Optimization of Abrasive Water Jet Machining (AWJM)

Authors : Apoorva Shastri, Aniket Nargundkar, Anand J. Kulkarni

Published in: Socio-Inspired Optimization Methods for Advanced Manufacturing Processes

Publisher: Springer Singapore

Abstract

Abrasive Water Jet Machining (AWJM) is an advanced version of Abrasive Jet Machining (AWJ) which employs water as the carrier medium for abrasive particles. The AWJM process can machine complex shapes and importantly, doesn’t generate heat concentrated zones. Work piece thickness, nozzle diameter, standoff distance and traverse speed are the typical process parameters/variables for AWJM. Kerf taper angle and surface roughness are performance responses as they indicate the geometry and surface finish of machined component, respectively.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Armağan M, Arici AA (2017) Cutting performance of glass-vinyl ester composite by abrasive water jet. Mater Manuf Process 32(15):1715–1722 CrossRef Armağan M, Arici AA (2017) Cutting performance of glass-vinyl ester composite by abrasive water jet. Mater Manuf Process 32(15):1715–1722 CrossRef
2.
go back to reference Dhanawade A, Kumar S, Kalmekar RV (2016) Abrasive water jet machining of carbon epoxy composite. Def Sci J 66(5):522–528 CrossRef Dhanawade A, Kumar S, Kalmekar RV (2016) Abrasive water jet machining of carbon epoxy composite. Def Sci J 66(5):522–528 CrossRef
3.
go back to reference Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95, Proceedings of the sixth international symposium on micro machine and human science. IEEE, pp 39–43 Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95, Proceedings of the sixth international symposium on micro machine and human science. IEEE, pp 39–43
4.
go back to reference Gostimirovic M, Pucovsky V, Sekulic M, Rodic D, Pejic V (2019) Evolutionary optimization of jet lag in the abrasive water jet machining. Int J Adv Manuf Technol 101(9–12):3131–3141 CrossRef Gostimirovic M, Pucovsky V, Sekulic M, Rodic D, Pejic V (2019) Evolutionary optimization of jet lag in the abrasive water jet machining. Int J Adv Manuf Technol 101(9–12):3131–3141 CrossRef
5.
go back to reference Gulia V, Nargundkar A (2019) Optimization of process parameters of abrasive water jet machining using variations of cohort intelligence (CI). In: Applications of artificial intelligence techniques in engineering. Springer, Singapore, pp 467–474 Gulia V, Nargundkar A (2019) Optimization of process parameters of abrasive water jet machining using variations of cohort intelligence (CI). In: Applications of artificial intelligence techniques in engineering. Springer, Singapore, pp 467–474
6.
7.
go back to reference Jagadeesh T (2015) Non traditional machining. Mechanical Engineering Department, National Institute of Technology, Calicut Jagadeesh T (2015) Non traditional machining. Mechanical Engineering Department, National Institute of Technology, Calicut
8.
go back to reference Jain VK (2008) Advanced (non-traditional) machining processes. In: Machining. Springer, London, pp 299–327 Jain VK (2008) Advanced (non-traditional) machining processes. In: Machining. Springer, London, pp 299–327
9.
go back to reference Kechagias J, Petropoulos G, Vaxevanidis N (2012) Application of Taguchi design for quality characterization of abrasive water jet machining of TRIP sheet steels. Int J AdvManuf Technol 62(5–8):635–643 CrossRef Kechagias J, Petropoulos G, Vaxevanidis N (2012) Application of Taguchi design for quality characterization of abrasive water jet machining of TRIP sheet steels. Int J AdvManuf Technol 62(5–8):635–643 CrossRef
10.
11.
go back to reference Kulkarni AJ, Durugkar IP, Kumar M (2013) Cohort intelligence: a self supervised learning behavior. In: 2013 IEEE international conference on systems, man, and cybernetics. IEEE, pp 1396–1400 Kulkarni AJ, Durugkar IP, Kumar M (2013) Cohort intelligence: a self supervised learning behavior. In: 2013 IEEE international conference on systems, man, and cybernetics. IEEE, pp 1396–1400
12.
go back to reference Momber AW, Kovacevic R (2012) Principles of abrasive water jet machining. Springer Science & Business Media Momber AW, Kovacevic R (2012) Principles of abrasive water jet machining. Springer Science & Business Media
13.
go back to reference Patankar NS, Kulkarni AJ (2018) Variations of cohort intelligence. Soft Comput 22(6):1731–1747 CrossRef Patankar NS, Kulkarni AJ (2018) Variations of cohort intelligence. Soft Comput 22(6):1731–1747 CrossRef
14.
go back to reference Samanta S, Chakraborty S (2011) Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm. Eng Appl Artif Intell 24(6):946–957 CrossRef Samanta S, Chakraborty S (2011) Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm. Eng Appl Artif Intell 24(6):946–957 CrossRef
15.
go back to reference Schwartzentruber J, Narayanan C, Papini M, Liu HT (2016) Optimized abrasive waterjet nozzle design using genetic algorithms. In: The 23rd international conference on water jetting. At Seattle, USA Schwartzentruber J, Narayanan C, Papini M, Liu HT (2016) Optimized abrasive waterjet nozzle design using genetic algorithms. In: The 23rd international conference on water jetting. At Seattle, USA
16.
go back to reference Shanmugam DK, Nguyen T, Wang J (2008) A study of delamination on graphite/epoxy composites in abrasive waterjet machining. Compos A Appl Sci Manuf 39(6):923–929 CrossRef Shanmugam DK, Nguyen T, Wang J (2008) A study of delamination on graphite/epoxy composites in abrasive waterjet machining. Compos A Appl Sci Manuf 39(6):923–929 CrossRef
17.
go back to reference Shastri AS, Kulkarni AJ (2018) Multi-cohort intelligence algorithm: an intra-and inter-group learning behaviour based socio-inspired optimisation methodology. Int J Parallel Emergent Distrib Syst 33(6):675–715 CrossRef Shastri AS, Kulkarni AJ (2018) Multi-cohort intelligence algorithm: an intra-and inter-group learning behaviour based socio-inspired optimisation methodology. Int J Parallel Emergent Distrib Syst 33(6):675–715 CrossRef
19.
go back to reference Shukla R, Singh D (2017) Experimentation investigation of abrasive water jet machining parameters using Taguchi and evolutionary optimization techniques. Swarm and Evolut Comput 32:167–183 CrossRef Shukla R, Singh D (2017) Experimentation investigation of abrasive water jet machining parameters using Taguchi and evolutionary optimization techniques. Swarm and Evolut Comput 32:167–183 CrossRef
20.
go back to reference Shukla R, Singh D (2017) Selection of parameters for advanced machining processes using firefly algorithm. Eng Sci Technol Int Jl 20(1):212–221 Shukla R, Singh D (2017) Selection of parameters for advanced machining processes using firefly algorithm. Eng Sci Technol Int Jl 20(1):212–221
21.
go back to reference Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713 CrossRef Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713 CrossRef
22.
go back to reference Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 world congress on nature & biologically inspired computing (NaBIC). IEEE, pp 210–214 Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 world congress on nature & biologically inspired computing (NaBIC). IEEE, pp 210–214
23.
go back to reference Yang XS, (2009) Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms. Springer, Berlin, Heidelberg. pp 169–178 Yang XS, (2009) Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms. Springer, Berlin, Heidelberg. pp 169–178
24.
go back to reference Zain AM, Haron H, Sharif S (2011) Estimation of the minimum machining performance in the abrasive water jet machining using integrated ANN-SA. Expert Syst Appl 38(7):8316–8326 CrossRef Zain AM, Haron H, Sharif S (2011) Estimation of the minimum machining performance in the abrasive water jet machining using integrated ANN-SA. Expert Syst Appl 38(7):8316–8326 CrossRef
Metadata
Title
Optimization of Abrasive Water Jet Machining (AWJM)
Authors
Apoorva Shastri
Aniket Nargundkar
Anand J. Kulkarni
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-7797-0_5

Premium Partner