Skip to main content
Top
Published in:

20-10-2023

Optimization of CdS-free non-toxic electron transport layer for Sb2S3-based solar cell with notable enhanced performance

Authors: Sameen Maqsood, Zohaib Ali, Khuram Ali, Rimsha Bashir Awan, Yusra Arooj, Ayesha Younus

Published in: Journal of Computational Electronics | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this investigation, we develop CdS-free non-toxic thin-film solar cell structure with antimony sulfide (Sb2S3) as an absorber material. Sb2S3 has found to be a promising candidate for production of renewable energy. Solar cells based on Sb2S3 have been attracted worldwide attraction due to their outstanding efficiency and low cost. To serve as an optimistic buffer layer, 3C-SiC (cubic silicon carbide) is used thanks to its suitable bandgap to replace toxic cadmium sulfide (CdS). SCAPS-1D (one-dimensional solar cell capacitance simulator) software has been employed to numerically investigate the performance of Sb2S3-based n-ZnO/n-3C-SiC/p-Sb2S3 heterostructure solar cells. The influence of absorber/buffer layer thickness, acceptor/donor densities, and defect density on device working have been investigated. Consequently, the role of defects in p-Sb2S3 along with the significance of n-3C-SiC/p-Sb2S3 interface defects has been studied to provide recommendations for achieving high efficiency. The proposed structure provides the enhanced efficiency of 17% under 1.5 G illumination spectrum. The parameters regarding solar cell performance such as Voc, Jsc, FF, QE and η have been studied graphically. This novel structure may have considerable influence on progress of improved photovoltaic devices in future.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yao, L.-Q., et al.: A liquid medium annealing strategy for highly [041]/[141]-oriented planar antimony sulfide solar cells with 7.23% efficiency. Nano Energy 106, 108064 (2023)CrossRef Yao, L.-Q., et al.: A liquid medium annealing strategy for highly [041]/[141]-oriented planar antimony sulfide solar cells with 7.23% efficiency. Nano Energy 106, 108064 (2023)CrossRef
2.
go back to reference Lin, W., et al.: Zn (O, S) buffer layer for in situ hydrothermal Sb2S3 planar solar cells. ACS Appl. Mater. Interfaces 13(38), 45726–45735 (2021)CrossRef Lin, W., et al.: Zn (O, S) buffer layer for in situ hydrothermal Sb2S3 planar solar cells. ACS Appl. Mater. Interfaces 13(38), 45726–45735 (2021)CrossRef
3.
go back to reference Wang, S., et al.: A novel multi-sulfur source collaborative chemical bath deposition technology enables 8%-efficiency Sb2S3 planar solar cells. Adv. Mater. 34(41), 2206242 (2022)CrossRef Wang, S., et al.: A novel multi-sulfur source collaborative chemical bath deposition technology enables 8%-efficiency Sb2S3 planar solar cells. Adv. Mater. 34(41), 2206242 (2022)CrossRef
4.
go back to reference Zeng, Y., et al.: Quasi-vertically-orientated antimony sulfide inorganic thin-film solar cells achieved by vapor transport deposition. ACS Appl. Mater. Interfaces 12(20), 22825–22834 (2020)CrossRef Zeng, Y., et al.: Quasi-vertically-orientated antimony sulfide inorganic thin-film solar cells achieved by vapor transport deposition. ACS Appl. Mater. Interfaces 12(20), 22825–22834 (2020)CrossRef
5.
go back to reference Espinosa, N., et al.: Outdoor fate and environmental impact of polymer solar cells through leaching and emission to rainwater and soil. Energy Environ. Sci. 9(5), 1674–1680 (2016)CrossRef Espinosa, N., et al.: Outdoor fate and environmental impact of polymer solar cells through leaching and emission to rainwater and soil. Energy Environ. Sci. 9(5), 1674–1680 (2016)CrossRef
6.
go back to reference Chopra, K., Paulson, P., Dutta, V.: Thin-film solar cells: an overview. Prog. Photovoltaics Res. Appl. 12(2–3), 69–92 (2004)CrossRef Chopra, K., Paulson, P., Dutta, V.: Thin-film solar cells: an overview. Prog. Photovoltaics Res. Appl. 12(2–3), 69–92 (2004)CrossRef
7.
go back to reference Aberle, A.G.: Thin-film solar cells. Thin Solid Films 517(17), 4706–4710 (2009)CrossRef Aberle, A.G.: Thin-film solar cells. Thin Solid Films 517(17), 4706–4710 (2009)CrossRef
8.
go back to reference Chatzisideris, M.D., et al.: Ecodesign perspectives of thin-film photovoltaic technologies: a review of life cycle assessment studies. Sol. Energy Mater. Sol. Cells 156, 2–10 (2016)CrossRef Chatzisideris, M.D., et al.: Ecodesign perspectives of thin-film photovoltaic technologies: a review of life cycle assessment studies. Sol. Energy Mater. Sol. Cells 156, 2–10 (2016)CrossRef
9.
go back to reference Lee, T.D., Ebong, A.U.: A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 70, 1286–1297 (2017)CrossRef Lee, T.D., Ebong, A.U.: A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 70, 1286–1297 (2017)CrossRef
10.
go back to reference Medina-Montes, M., et al.: Development of sputtered CuSbS2 thin films grown by sequential deposition of binary sulfides. Semicond. Sci. Technol. 33(5), 055004 (2018)CrossRef Medina-Montes, M., et al.: Development of sputtered CuSbS2 thin films grown by sequential deposition of binary sulfides. Semicond. Sci. Technol. 33(5), 055004 (2018)CrossRef
11.
go back to reference Sundaram, S., Shanks, K., Upadhyaya, H.: Thin film photovoltaics. In: A comprehensive guide to solar energy systems, pp. 361–370. Elsevier (2018)CrossRef Sundaram, S., Shanks, K., Upadhyaya, H.: Thin film photovoltaics. In: A comprehensive guide to solar energy systems, pp. 361–370. Elsevier (2018)CrossRef
12.
go back to reference Powalla, M., et al.: Thin-film solar cells exceeding 22% solar cell efficiency: an overview on CdTe-, Cu (In, Ga) Se2-, and perovskite-based materials. Appl. Phys. Rev. 5(4), 041602 (2018)CrossRef Powalla, M., et al.: Thin-film solar cells exceeding 22% solar cell efficiency: an overview on CdTe-, Cu (In, Ga) Se2-, and perovskite-based materials. Appl. Phys. Rev. 5(4), 041602 (2018)CrossRef
13.
go back to reference Xu, M., et al.: Simple emitter patterning of silicon heterojunction interdigitated back-contact solar cells using damage-free laser ablation. Sol. Energy Mater. Sol. Cells 186, 78–83 (2018)CrossRef Xu, M., et al.: Simple emitter patterning of silicon heterojunction interdigitated back-contact solar cells using damage-free laser ablation. Sol. Energy Mater. Sol. Cells 186, 78–83 (2018)CrossRef
14.
go back to reference Xu, M., et al.: Dry passivation process for silicon heterojunction solar cells using hydrogen plasma treatment followed by in situ a-Si: H deposition. IEEE J. Photovolt. 8(6), 1539–1545 (2018)CrossRef Xu, M., et al.: Dry passivation process for silicon heterojunction solar cells using hydrogen plasma treatment followed by in situ a-Si: H deposition. IEEE J. Photovolt. 8(6), 1539–1545 (2018)CrossRef
15.
go back to reference Cho, J., et al.: Passivating electron-selective contacts for silicon solar cells based on an a-Si: H/TiOx stack and a low work function metal. Prog. Photovolt. Res. Appl. 26(10), 835–845 (2018)CrossRef Cho, J., et al.: Passivating electron-selective contacts for silicon solar cells based on an a-Si: H/TiOx stack and a low work function metal. Prog. Photovolt. Res. Appl. 26(10), 835–845 (2018)CrossRef
16.
go back to reference Xu, M., et al.: Silicon heterojunction interdigitated back-contact solar cells bonded to glass with efficiency> 21%. Sol. Energy Mater. Sol. Cells 165, 82–87 (2017)CrossRef Xu, M., et al.: Silicon heterojunction interdigitated back-contact solar cells bonded to glass with efficiency> 21%. Sol. Energy Mater. Sol. Cells 165, 82–87 (2017)CrossRef
17.
go back to reference Abdo, I., et al.: Influence of periodic surface nanopatterning profiles on series resistance in thin-film crystalline silicon heterojunction solar cells. IEEE J. Photovolt. 5(5), 1319–1324 (2015)CrossRef Abdo, I., et al.: Influence of periodic surface nanopatterning profiles on series resistance in thin-film crystalline silicon heterojunction solar cells. IEEE J. Photovolt. 5(5), 1319–1324 (2015)CrossRef
18.
go back to reference Bouich, A., et al.: Experimental, theoretical, and numerical simulation of the performance of CuInxGa (1–x) S2-based solar cells. Optik 183, 137–147 (2019)CrossRef Bouich, A., et al.: Experimental, theoretical, and numerical simulation of the performance of CuInxGa (1–x) S2-based solar cells. Optik 183, 137–147 (2019)CrossRef
19.
go back to reference Kosyachenko, L.A., et al.: Optical and recombination losses in thin-film Cu (In, Ga) Se2 solar cells. Sol. Energy Mater. Sol. Cells 130, 291–302 (2014)CrossRef Kosyachenko, L.A., et al.: Optical and recombination losses in thin-film Cu (In, Ga) Se2 solar cells. Sol. Energy Mater. Sol. Cells 130, 291–302 (2014)CrossRef
20.
go back to reference Abderrezek, M., Djeghlal, M.E.: Comparative study on Cu2ZnSn (S, Se) 4 based thin film solar cell performances by adding various back surface field (BSF) layers. Chin. J. Phys. 63, 231–239 (2020)CrossRef Abderrezek, M., Djeghlal, M.E.: Comparative study on Cu2ZnSn (S, Se) 4 based thin film solar cell performances by adding various back surface field (BSF) layers. Chin. J. Phys. 63, 231–239 (2020)CrossRef
21.
go back to reference Ahmad, F., et al.: Towards highly efficient thin-film solar cells with a graded-bandgap CZTSSe layer. J. Phys. Energy 2(2), 025004 (2020)CrossRef Ahmad, F., et al.: Towards highly efficient thin-film solar cells with a graded-bandgap CZTSSe layer. J. Phys. Energy 2(2), 025004 (2020)CrossRef
22.
go back to reference Et-taya, L., Ouslimane, T., Benami, A.: Numerical analysis of earth-abundant Cu2ZnSn (SxSe1-x) 4 solar cells based on Spectroscopic Ellipsometry results by using SCAPS-1D. Sol. Energy 201, 827–835 (2020)CrossRef Et-taya, L., Ouslimane, T., Benami, A.: Numerical analysis of earth-abundant Cu2ZnSn (SxSe1-x) 4 solar cells based on Spectroscopic Ellipsometry results by using SCAPS-1D. Sol. Energy 201, 827–835 (2020)CrossRef
23.
go back to reference Amin, N., Sopian, K., Konagai, M.: Numerical modeling of CdS/CdTe and CdS/CdTe/ZnTe solar cells as a function of CdTe thickness. Sol. Energy Mater. Sol. Cells 91(13), 1202–1208 (2007)CrossRef Amin, N., Sopian, K., Konagai, M.: Numerical modeling of CdS/CdTe and CdS/CdTe/ZnTe solar cells as a function of CdTe thickness. Sol. Energy Mater. Sol. Cells 91(13), 1202–1208 (2007)CrossRef
24.
go back to reference Plotnikov, V., et al.: Thin-film CdTe cells: reducing the CdTe. Thin Solid Films 519(21), 7134–7137 (2011)CrossRef Plotnikov, V., et al.: Thin-film CdTe cells: reducing the CdTe. Thin Solid Films 519(21), 7134–7137 (2011)CrossRef
25.
go back to reference Paudel, N., Wieland, K., Compaan, A.: Ultrathin CdS/CdTe solar cells by sputtering. Sol. Energy Mater. Sol. Cells 105, 109–112 (2012)CrossRef Paudel, N., Wieland, K., Compaan, A.: Ultrathin CdS/CdTe solar cells by sputtering. Sol. Energy Mater. Sol. Cells 105, 109–112 (2012)CrossRef
26.
go back to reference Enriquez, J.P., et al.: Influence of the film thickness on structural and optical properties of CdTe thin films electrodeposited on stainless steel substrates. Mater. Chem. Phys. 142(1), 432–437 (2013)CrossRef Enriquez, J.P., et al.: Influence of the film thickness on structural and optical properties of CdTe thin films electrodeposited on stainless steel substrates. Mater. Chem. Phys. 142(1), 432–437 (2013)CrossRef
27.
go back to reference Luo, L., et al.: High efficient and stable solid solar cell: based on FeS2 nanocrystals and P3HT: PCBM. Energy Proc. 75, 2181–2186 (2015)CrossRef Luo, L., et al.: High efficient and stable solid solar cell: based on FeS2 nanocrystals and P3HT: PCBM. Energy Proc. 75, 2181–2186 (2015)CrossRef
28.
go back to reference Xue, D.J., et al.: CuSbSe2 as a potential photovoltaic absorber material: studies from theory to experiment. Adv. Energy Mater. 5(23), 1501203 (2015)CrossRef Xue, D.J., et al.: CuSbSe2 as a potential photovoltaic absorber material: studies from theory to experiment. Adv. Energy Mater. 5(23), 1501203 (2015)CrossRef
29.
go back to reference Baranowski, L.L., et al.: Effects of disorder on carrier transport in Cu 2 SnS 3. Phys. Rev. Appl. 4(4), 044017 (2015)CrossRef Baranowski, L.L., et al.: Effects of disorder on carrier transport in Cu 2 SnS 3. Phys. Rev. Appl. 4(4), 044017 (2015)CrossRef
30.
go back to reference Hossain, E.S., et al.: Performance assessment of Cu2SnS3 (CTS) based thin film solar cells by AMPS-1D. Curr. Appl. Phys. 18(1), 79–89 (2018)CrossRef Hossain, E.S., et al.: Performance assessment of Cu2SnS3 (CTS) based thin film solar cells by AMPS-1D. Curr. Appl. Phys. 18(1), 79–89 (2018)CrossRef
31.
go back to reference Razykov, T., et al.: Characterisation of SnSe thin films fabricated by chemical molecular beam deposition for use in thin film solar cells. Sol. Energy 159, 834–840 (2018)CrossRef Razykov, T., et al.: Characterisation of SnSe thin films fabricated by chemical molecular beam deposition for use in thin film solar cells. Sol. Energy 159, 834–840 (2018)CrossRef
32.
33.
go back to reference Zhou, Y., et al.: Thin-film Sb 2 Se 3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat. Photon. 9(6), 409–415 (2015)CrossRef Zhou, Y., et al.: Thin-film Sb 2 Se 3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat. Photon. 9(6), 409–415 (2015)CrossRef
34.
go back to reference Chen, C., et al.: Optical properties of amorphous and polycrystalline Sb2Se3 thin films prepared by thermal evaporation. Appl. Phys. Lett. 107(4), 043905 (2015)CrossRef Chen, C., et al.: Optical properties of amorphous and polycrystalline Sb2Se3 thin films prepared by thermal evaporation. Appl. Phys. Lett. 107(4), 043905 (2015)CrossRef
35.
go back to reference Zeng, K., Xue, D.-J., Tang, J.: Antimony selenide thin-film solar cells. Semicond. Sci. Technol. 31(6), 063001 (2016)CrossRef Zeng, K., Xue, D.-J., Tang, J.: Antimony selenide thin-film solar cells. Semicond. Sci. Technol. 31(6), 063001 (2016)CrossRef
36.
go back to reference Li, Z., et al.: Sb2Se3 thin film solar cells in substrate configuration and the back contact selenization. Sol. Energy Mater. Sol. Cells 161, 190–196 (2017)CrossRef Li, Z., et al.: Sb2Se3 thin film solar cells in substrate configuration and the back contact selenization. Sol. Energy Mater. Sol. Cells 161, 190–196 (2017)CrossRef
37.
go back to reference Li, Z., et al.: 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nature Commun. 10(1), 1–9 (2019) Li, Z., et al.: 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nature Commun. 10(1), 1–9 (2019)
38.
go back to reference Zhou, Y., et al.: Solution-processed antimony selenide heterojunction solar cells. Adv. Energy Mater. 4(8), 1301846 (2014)CrossRef Zhou, Y., et al.: Solution-processed antimony selenide heterojunction solar cells. Adv. Energy Mater. 4(8), 1301846 (2014)CrossRef
39.
go back to reference Chen, C., et al., Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics. Frontiers of Optoelectronics, 2017. 10(NREL/JA-5K00–68320). Chen, C., et al., Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics. Frontiers of Optoelectronics, 2017. 10(NREL/JA-5K00–68320).
40.
go back to reference Wang, L., et al.: Stable 6%-efficient Sb 2 Se 3 solar cells with a ZnO buffer layer. Nat. Energy 2(4), 1–9 (2017)CrossRef Wang, L., et al.: Stable 6%-efficient Sb 2 Se 3 solar cells with a ZnO buffer layer. Nat. Energy 2(4), 1–9 (2017)CrossRef
41.
go back to reference Chen, S., et al.: Magnetron sputtered Sb2Se3-based thin films towards high performance quasi-homojunction thin film solar cells. Sol. Energy Mater. Sol. Cells 203, 110154 (2019)CrossRef Chen, S., et al.: Magnetron sputtered Sb2Se3-based thin films towards high performance quasi-homojunction thin film solar cells. Sol. Energy Mater. Sol. Cells 203, 110154 (2019)CrossRef
42.
go back to reference Lin, L.-Y., et al.: Analysis of Sb2Se3/CdS based photovoltaic cell: A numerical simulation approach. J. Phys. Chem. Solids 122, 19–24 (2018)CrossRef Lin, L.-Y., et al.: Analysis of Sb2Se3/CdS based photovoltaic cell: A numerical simulation approach. J. Phys. Chem. Solids 122, 19–24 (2018)CrossRef
43.
go back to reference Baig, F., et al.: A baseline for the numerical study of sb2se3 absorber material based solar cell. J. Nanoelectron. Optoelectron. 14(1), 72–79 (2019)CrossRef Baig, F., et al.: A baseline for the numerical study of sb2se3 absorber material based solar cell. J. Nanoelectron. Optoelectron. 14(1), 72–79 (2019)CrossRef
44.
go back to reference Cao, Y., et al.: Towards high efficiency inverted Sb2Se3 thin film solar cells. Sol. Energy Mater. Sol. Cells 200, 109945 (2019)CrossRef Cao, Y., et al.: Towards high efficiency inverted Sb2Se3 thin film solar cells. Sol. Energy Mater. Sol. Cells 200, 109945 (2019)CrossRef
45.
go back to reference Baig, F., et al.: Numerical analysis of a novel CNT/Cu2O/Sb2Se3/In2S3/ITO antimony selenide solar cell. Optik 197, 163107 (2019)CrossRef Baig, F., et al.: Numerical analysis of a novel CNT/Cu2O/Sb2Se3/In2S3/ITO antimony selenide solar cell. Optik 197, 163107 (2019)CrossRef
46.
go back to reference Li, Z.-Q., Ni, M., Feng, X.-D.: Simulation of the Sb2Se3 solar cell with a hole transport layer. Mater. Res. Exp. 7(1), 016416 (2020)CrossRef Li, Z.-Q., Ni, M., Feng, X.-D.: Simulation of the Sb2Se3 solar cell with a hole transport layer. Mater. Res. Exp. 7(1), 016416 (2020)CrossRef
47.
go back to reference Gharibshahian, I., Orouji, A.A., Sharbati, S.: Towards high efficiency Cd-Free Sb2Se3 solar cells by the band alignment optimization. Sol. Energy Mater. Sol. Cells 212, 110581 (2020)CrossRef Gharibshahian, I., Orouji, A.A., Sharbati, S.: Towards high efficiency Cd-Free Sb2Se3 solar cells by the band alignment optimization. Sol. Energy Mater. Sol. Cells 212, 110581 (2020)CrossRef
48.
go back to reference Choi, Y.C., et al.: Sb2Se3-sensitized inorganic–organic heterojunction solar cells fabricated using a single-source precursor. Angew. Chem. 126(5), 1353–1357 (2014)CrossRef Choi, Y.C., et al.: Sb2Se3-sensitized inorganic–organic heterojunction solar cells fabricated using a single-source precursor. Angew. Chem. 126(5), 1353–1357 (2014)CrossRef
49.
go back to reference Liu, X., et al.: Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells. ACS Appl. Mater. Interfaces 6(13), 10687–10695 (2014)CrossRef Liu, X., et al.: Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells. ACS Appl. Mater. Interfaces 6(13), 10687–10695 (2014)CrossRef
50.
go back to reference Ngo, T.T., et al.: Electrodeposition of antimony selenide thin films and application in semiconductor sensitized solar cells. ACS Appl. Mater. Interfaces 6(4), 2836–2841 (2014)CrossRef Ngo, T.T., et al.: Electrodeposition of antimony selenide thin films and application in semiconductor sensitized solar cells. ACS Appl. Mater. Interfaces 6(4), 2836–2841 (2014)CrossRef
51.
go back to reference Luo, M., et al.: Thermal evaporation and characterization of superstrate CdS/Sb2Se3 solar cells. Appl. Phys. Lett. 104(17), 173904 (2014)CrossRef Luo, M., et al.: Thermal evaporation and characterization of superstrate CdS/Sb2Se3 solar cells. Appl. Phys. Lett. 104(17), 173904 (2014)CrossRef
52.
go back to reference Leng, M., et al.: Selenization of Sb2Se3 absorber layer: an efficient step to improve device performance of CdS/Sb2Se3 solar cells. Appl. Phys. Lett. 105(8), 083905 (2014)CrossRef Leng, M., et al.: Selenization of Sb2Se3 absorber layer: an efficient step to improve device performance of CdS/Sb2Se3 solar cells. Appl. Phys. Lett. 105(8), 083905 (2014)CrossRef
53.
go back to reference Chen, C., et al.: 6.5% certified efficiency Sb2Se3 solar cells using PbS colloidal quantum dot film as hole-transporting layer. ACS Energy Lett. 2(9), 2125–2132 (2017)CrossRef Chen, C., et al.: 6.5% certified efficiency Sb2Se3 solar cells using PbS colloidal quantum dot film as hole-transporting layer. ACS Energy Lett. 2(9), 2125–2132 (2017)CrossRef
54.
go back to reference Wen, X., et al.: Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nature Commun. 9(1), 1–10 (2018)MathSciNetCrossRef Wen, X., et al.: Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nature Commun. 9(1), 1–10 (2018)MathSciNetCrossRef
55.
go back to reference Shi, J., et al.: Enhanced interface properties of solution-processed antimony sulfide planar solar cells with n-type indium sulfide buffer layer. Electrochim. Acta 376, 138031 (2021)CrossRef Shi, J., et al.: Enhanced interface properties of solution-processed antimony sulfide planar solar cells with n-type indium sulfide buffer layer. Electrochim. Acta 376, 138031 (2021)CrossRef
56.
go back to reference Liu, S.-C., et al.: Boosting the efficiency of GeSe solar cells by low-temperature treatment of pn junction. Sci. China-Mater. 64(9), 2118–2126 (2021)CrossRef Liu, S.-C., et al.: Boosting the efficiency of GeSe solar cells by low-temperature treatment of pn junction. Sci. China-Mater. 64(9), 2118–2126 (2021)CrossRef
57.
go back to reference Durose, K.: High efficiency for As-doped cells. Nat. Energy 4(10), 825–826 (2019)CrossRef Durose, K.: High efficiency for As-doped cells. Nat. Energy 4(10), 825–826 (2019)CrossRef
58.
go back to reference La Via, F., et al.: From thin film to bulk 3C-SiC growth: Understanding the mechanism of defects reduction. Mater. Sci. Semicond. Process. 78, 57–68 (2018)CrossRef La Via, F., et al.: From thin film to bulk 3C-SiC growth: Understanding the mechanism of defects reduction. Mater. Sci. Semicond. Process. 78, 57–68 (2018)CrossRef
59.
go back to reference Metzger, W.K., et al.: Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells. Nat. Energy 4(10), 837–845 (2019)CrossRef Metzger, W.K., et al.: Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells. Nat. Energy 4(10), 837–845 (2019)CrossRef
60.
go back to reference Nelson, W., Halden, F., Rosengreen, A.: Growth and Properties of β-SiC Single Crystals. J. Appl. Phys. 37(1), 333–336 (1966)CrossRef Nelson, W., Halden, F., Rosengreen, A.: Growth and Properties of β-SiC Single Crystals. J. Appl. Phys. 37(1), 333–336 (1966)CrossRef
61.
go back to reference Syväjärvi, M., et al.: Cubic silicon carbide as a potential photovoltaic material. Sol. Energy Mater. Sol. Cells 145, 104–108 (2016)CrossRef Syväjärvi, M., et al.: Cubic silicon carbide as a potential photovoltaic material. Sol. Energy Mater. Sol. Cells 145, 104–108 (2016)CrossRef
62.
go back to reference Sobayel, M., et al.: Efficiency enhancement of CIGS solar cell by cubic silicon carbide as prospective buffer layer. Sol. Energy 224, 271–278 (2021)CrossRef Sobayel, M., et al.: Efficiency enhancement of CIGS solar cell by cubic silicon carbide as prospective buffer layer. Sol. Energy 224, 271–278 (2021)CrossRef
63.
go back to reference Burgelman, M., et al., SCAPS Manual (version: 3.3. 07). Department of Electronics and Information Systems, University of Gent, Belgium. 2018. Burgelman, M., et al., SCAPS Manual (version: 3.3. 07). Department of Electronics and Information Systems, University of Gent, Belgium. 2018.
64.
go back to reference Basak, A., Singh, U.P.: Numerical modelling and analysis of earth abundant Sb2S3 and Sb2Se3 based solar cells using SCAPS-1D. Sol. Energy Mater. Sol. Cells 230, 111184 (2021)CrossRef Basak, A., Singh, U.P.: Numerical modelling and analysis of earth abundant Sb2S3 and Sb2Se3 based solar cells using SCAPS-1D. Sol. Energy Mater. Sol. Cells 230, 111184 (2021)CrossRef
65.
go back to reference Sameera, J.N., et al.: Cubic Silicon Carbide (3C–SiC) as a buffer layer for high efficiency and highly stable CdTe solar cell. Opt. Mater. 123, 111911 (2022)CrossRef Sameera, J.N., et al.: Cubic Silicon Carbide (3C–SiC) as a buffer layer for high efficiency and highly stable CdTe solar cell. Opt. Mater. 123, 111911 (2022)CrossRef
66.
go back to reference Rahman, S., Al-Ahmed, S.R.: Photovoltaic performance enhancement in CdTe thin-film heterojunction solar cell with Sb2S3 as hole transport layer. Sol. Energy 230, 605–617 (2021)CrossRef Rahman, S., Al-Ahmed, S.R.: Photovoltaic performance enhancement in CdTe thin-film heterojunction solar cell with Sb2S3 as hole transport layer. Sol. Energy 230, 605–617 (2021)CrossRef
67.
go back to reference Tinedert, I., et al.: Design and simulation of a high efficiency CdS/CdTe solar cell. Optik 208, 164112 (2020)CrossRef Tinedert, I., et al.: Design and simulation of a high efficiency CdS/CdTe solar cell. Optik 208, 164112 (2020)CrossRef
68.
go back to reference Kuddus, A., et al.: Enhancement of the performance of CdS/CdTe heterojunction solar cell using TiO2/ZnO bi-layer ARC and V2O5 BSF layers: a simulation approach. Eur. Phys. J. Appl. Phys. 92(2), 20901 (2020)CrossRef Kuddus, A., et al.: Enhancement of the performance of CdS/CdTe heterojunction solar cell using TiO2/ZnO bi-layer ARC and V2O5 BSF layers: a simulation approach. Eur. Phys. J. Appl. Phys. 92(2), 20901 (2020)CrossRef
69.
go back to reference Sawicka-Chudy, P., et al.: Simulation of TiO2/CuO solar cells with SCAPS-1D software. Mater. Res. Exp. 6(8), 085918 (2019)CrossRef Sawicka-Chudy, P., et al.: Simulation of TiO2/CuO solar cells with SCAPS-1D software. Mater. Res. Exp. 6(8), 085918 (2019)CrossRef
70.
go back to reference Moradi, M., et al.: Buffer layer replacement: a method for increasing the conversion efficiency of CIGS thin film solar cells. Optik 136, 222–227 (2017)CrossRef Moradi, M., et al.: Buffer layer replacement: a method for increasing the conversion efficiency of CIGS thin film solar cells. Optik 136, 222–227 (2017)CrossRef
71.
go back to reference Chelvanathan, P., Hossain, M.I., Amin, N.: Performance analysis of copper–indium–gallium–diselenide (CIGS) solar cells with various buffer layers by SCAPS. Curr. Appl. Phys. 10(3), S387–S391 (2010)CrossRef Chelvanathan, P., Hossain, M.I., Amin, N.: Performance analysis of copper–indium–gallium–diselenide (CIGS) solar cells with various buffer layers by SCAPS. Curr. Appl. Phys. 10(3), S387–S391 (2010)CrossRef
72.
go back to reference Yaşar, S., et al.: Numerical thickness optimization study of CIGS based solar cells with wxAMPS. Optik 127(20), 8827–8835 (2016)CrossRef Yaşar, S., et al.: Numerical thickness optimization study of CIGS based solar cells with wxAMPS. Optik 127(20), 8827–8835 (2016)CrossRef
73.
go back to reference Kanevce, A., et al.: The roles of carrier concentration and interface, bulk, and grain-boundary recombination for 25% efficient CdTe solar cells. J. Appl. Phys. 121(21), 214506 (2017)CrossRef Kanevce, A., et al.: The roles of carrier concentration and interface, bulk, and grain-boundary recombination for 25% efficient CdTe solar cells. J. Appl. Phys. 121(21), 214506 (2017)CrossRef
74.
go back to reference Kolsi, S., et al. Effect of Gaussian doping profile on the performance of a thin film polycrystalline solar cell. in EPJ Web of Conferences. 2012. EDP Sciences. Kolsi, S., et al. Effect of Gaussian doping profile on the performance of a thin film polycrystalline solar cell. in EPJ Web of Conferences. 2012. EDP Sciences.
75.
go back to reference Maurya, K., Singh, V.: Sb2Se3 versus Sb2S3 solar cell: A numerical simulation. Sol. Energy 228, 540–549 (2021)CrossRef Maurya, K., Singh, V.: Sb2Se3 versus Sb2S3 solar cell: A numerical simulation. Sol. Energy 228, 540–549 (2021)CrossRef
76.
go back to reference Al-Ahmed, S.R., Sunny, A., Rahman, S.: Performance enhancement of Sb2Se3 solar cell using a back surface field layer: a numerical simulation approach. Solar Energy Mater. Solar Cells 221, 110919 (2021)CrossRef Al-Ahmed, S.R., Sunny, A., Rahman, S.: Performance enhancement of Sb2Se3 solar cell using a back surface field layer: a numerical simulation approach. Solar Energy Mater. Solar Cells 221, 110919 (2021)CrossRef
77.
go back to reference Ali, Z., et al.: Towards the enhanced efficiency of ultrathin Sb2Se3 based solar cell with cubic silicon carbide (3C–SiC) buffer layer. Opt. Mater. 128, 112358 (2022)CrossRef Ali, Z., et al.: Towards the enhanced efficiency of ultrathin Sb2Se3 based solar cell with cubic silicon carbide (3C–SiC) buffer layer. Opt. Mater. 128, 112358 (2022)CrossRef
78.
go back to reference Ali, K., Ali, Z.: Analytical study of electrical performance of SiGe-based n+-p-p+ solar cells with BaSi2 BSF structure. Sol. Energy 225, 91–96 (2021)CrossRef Ali, K., Ali, Z.: Analytical study of electrical performance of SiGe-based n+-p-p+ solar cells with BaSi2 BSF structure. Sol. Energy 225, 91–96 (2021)CrossRef
79.
go back to reference Kuddus, A., Ismail, A.B.M., Hossain, J.: Design of a highly efficient CdTe-based dual-heterojunction solar cell with 44% predicted efficiency. Sol. Energy 221, 488–501 (2021)CrossRef Kuddus, A., Ismail, A.B.M., Hossain, J.: Design of a highly efficient CdTe-based dual-heterojunction solar cell with 44% predicted efficiency. Sol. Energy 221, 488–501 (2021)CrossRef
80.
go back to reference Islam, A., et al.: Performance analysis of tungsten disulfide (WS2) as an alternative buffer layer for CdTe solar cell through numerical modeling. Opt. Mater. 120, 111296 (2021)CrossRef Islam, A., et al.: Performance analysis of tungsten disulfide (WS2) as an alternative buffer layer for CdTe solar cell through numerical modeling. Opt. Mater. 120, 111296 (2021)CrossRef
81.
go back to reference Green, M.A.: General temperature dependence of solar cell performance and implications for device modelling. Prog. Photovoltaics Res. Appl. 11(5), 333–340 (2003)CrossRef Green, M.A.: General temperature dependence of solar cell performance and implications for device modelling. Prog. Photovoltaics Res. Appl. 11(5), 333–340 (2003)CrossRef
82.
go back to reference Theelen, M., et al.: Determination of the temperature dependency of the electrical parameters of CIGS solar cells. J. Renew. Sustain. Energy 9(2), 021205 (2017)CrossRef Theelen, M., et al.: Determination of the temperature dependency of the electrical parameters of CIGS solar cells. J. Renew. Sustain. Energy 9(2), 021205 (2017)CrossRef
83.
go back to reference Heriche, H., Rouabah, Z., Bouarissa, N.: New ultra thin CIGS structure solar cells using SCAPS simulation program. Int. J. Hydrogen Energy 42(15), 9524–9532 (2017)CrossRef Heriche, H., Rouabah, Z., Bouarissa, N.: New ultra thin CIGS structure solar cells using SCAPS simulation program. Int. J. Hydrogen Energy 42(15), 9524–9532 (2017)CrossRef
84.
go back to reference Jhuma, F.A., Shaily, M.Z., Rashid, M.J.: Towards high-efficiency CZTS solar cell through buffer layer optimization. Mater. Renew. Sustain. Energy 8(1), 1–7 (2019)CrossRef Jhuma, F.A., Shaily, M.Z., Rashid, M.J.: Towards high-efficiency CZTS solar cell through buffer layer optimization. Mater. Renew. Sustain. Energy 8(1), 1–7 (2019)CrossRef
85.
go back to reference Hao, X., et al. Large Voc improvement and 9.2% efficient pure sulfide Cu 2 ZnSnS 4 solar cells by heterojunction interface engineering. in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). 2016. IEEE. Hao, X., et al. Large Voc improvement and 9.2% efficient pure sulfide Cu 2 ZnSnS 4 solar cells by heterojunction interface engineering. in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). 2016. IEEE.
86.
go back to reference Choi, Y.C., et al.: Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy. Adv. Funct. Mater. 24(23), 3587–3592 (2014)CrossRef Choi, Y.C., et al.: Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy. Adv. Funct. Mater. 24(23), 3587–3592 (2014)CrossRef
Metadata
Title
Optimization of CdS-free non-toxic electron transport layer for Sb2S3-based solar cell with notable enhanced performance
Authors
Sameen Maqsood
Zohaib Ali
Khuram Ali
Rimsha Bashir Awan
Yusra Arooj
Ayesha Younus
Publication date
20-10-2023
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 6/2023
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02106-9