Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Geotechnical and Geological Engineering 11/2022

04-07-2022 | Original Paper

Optimization of Gravity Concrete Dams Using the Grasshopper Algorithm (Case Study: Koyna Dam)

Authors: Mehran Seifollahi, Salim Abbasi, John Abraham, Reza Norouzi, Rasoul Daneshfaraz, Mohammad-Ali Lotfollahi-Yaghin, Ahmet Alkan

Published in: Geotechnical and Geological Engineering | Issue 11/2022

Login to get access

Abstract

The aim of this study is to optimize the geometric dimensions of the Koyna concrete weight dam with and without seismic forces using the grasshopper optimizer algorithm (GOA). In the methodology section of this paper, the geometric parameters of the dam are provided as input data to an objective function minimizing the geometric dimensions and concreting volume of the dam body. The present results show that the best model for optimization with the grasshopper algorithm for situations without the effects of seismic forces has a 13.7% reduction in a concrete volume equivalent to 498 cubic meters. The results of the grasshopper algorithm were compared with the results of the particle swarm optimizer (PSO), Gray wolf optimizer (GWO), and LINGO11 algorithms. A comparison of the optimized volume of concrete shows that with the PSO method, volume reductions were: 378 cubic meters 10.4% with the GWO method, 431 cubic meters 11.86% with the LINGO11 process, 82 cubic meters 2.25% with the GOA method, 498 cubic meters 13.7%. The best optimization results were obtained with the effects of seismic forces with a 10.99% reduction in the volume of concrete equal to ~ 400 cubic meters. The results show the superiority of the optimization method of the grasshopper algorithm over other methods. The amount of concrete used in the Koyna dam is 3633 cubic meters, which in the optimized state with LINGO11 method 3551 cubic meters in GWO method 3255, in PSO method 3202, and in GOA method, 3138 cubic meters, which in general, the volume is optimized, respectively 82, 378, 431, and 495 cubic meters.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
go back to reference Anon H (1976) Design of gravity dams. United States Department of the Interior Bureau of -Reclamation (USBR) A Water Resources Technical Press, Colorado Anon H (1976) Design of gravity dams. United States Department of the Interior Bureau of -Reclamation (USBR) A Water Resources Technical Press, Colorado
go back to reference Carmen S, Popa R (2010) Application of honey-bees mating optimization algorithm to pumping station scheduling for water supply. Mech Eng 72(1):77–84 Carmen S, Popa R (2010) Application of honey-bees mating optimization algorithm to pumping station scheduling for water supply. Mech Eng 72(1):77–84
go back to reference Chiti H, Khatibinia M, Akbarpour A, Naseri HR (2016) Reliability–based design optimization of concrete gravity dams using subset simulation. Int J Optim Civ Eng 6:329–348 Chiti H, Khatibinia M, Akbarpour A, Naseri HR (2016) Reliability–based design optimization of concrete gravity dams using subset simulation. Int J Optim Civ Eng 6:329–348
go back to reference Daneshfaraz R, Bagherzadeh M, Esmaeeli R, Norouzi R, Abraham J (2021b) Study of the performance of support vector machine for predicting vertical drop hydraulic parameters in the presence of dual horizontal screens. Water Supply 21(1):217–231 CrossRef Daneshfaraz R, Bagherzadeh M, Esmaeeli R, Norouzi R, Abraham J (2021b) Study of the performance of support vector machine for predicting vertical drop hydraulic parameters in the presence of dual horizontal screens. Water Supply 21(1):217–231 CrossRef
go back to reference Deepika R, Suribabu CR (2015) Optimal design of gravity dam using differential evolution algorithm. Iran Univ Sci Technol 5(3):255–266 Deepika R, Suribabu CR (2015) Optimal design of gravity dam using differential evolution algorithm. Iran Univ Sci Technol 5(3):255–266
go back to reference Esat V, Hall MJ (1994) Water resources system optimization using genetic algorithms. In: Proceeding of the first international conference on hydroinformatics. Balkema. Rotterdam. 1, 225–231. Esat V, Hall MJ (1994) Water resources system optimization using genetic algorithms. In: Proceeding of the first international conference on hydroinformatics. Balkema. Rotterdam. 1, 225–231.
go back to reference Ghodousi H, Oskouhi M (2015) Determination of optimal dimensions of concrete gravity dams using LINGO11 nonlinear modeling. J Civil Eng Urban 5(02):47–52 Ghodousi H, Oskouhi M (2015) Determination of optimal dimensions of concrete gravity dams using LINGO11 nonlinear modeling. J Civil Eng Urban 5(02):47–52
go back to reference Hojjati A, Monadi M, Faridhosseini A, Mohammadi M (2018) Application and comparison of NSGA-II and MOPSO in multi-objective optimization of water resources systems. J Hydrol Hydromech 66(3):323–329 CrossRef Hojjati A, Monadi M, Faridhosseini A, Mohammadi M (2018) Application and comparison of NSGA-II and MOPSO in multi-objective optimization of water resources systems. J Hydrol Hydromech 66(3):323–329 CrossRef
go back to reference Hosseiny SM, Rahmani AI, Derakhshan M, Fatahizadeh R (2021) An intrusion detection system: using a grasshopper algorithm. Hosseiny SM, Rahmani AI, Derakhshan M, Fatahizadeh R (2021) An intrusion detection system: using a grasshopper algorithm.
go back to reference Iraji H, Mohammadi M, Shakouri B, Meshram SG (2020) Predicting reservoir volume reduction using artificial neural network. Arab J Geosci 13(17):1–13 CrossRef Iraji H, Mohammadi M, Shakouri B, Meshram SG (2020) Predicting reservoir volume reduction using artificial neural network. Arab J Geosci 13(17):1–13 CrossRef
go back to reference Karami H, Rezaei Ahvanooei A (2021) Estimating discharge coefficient of curved piano key overflows using combination of support vector regression and Grasshopper and Firefly algorithms. Irrig Water Eng 12(2):186–202 Karami H, Rezaei Ahvanooei A (2021) Estimating discharge coefficient of curved piano key overflows using combination of support vector regression and Grasshopper and Firefly algorithms. Irrig Water Eng 12(2):186–202
go back to reference Kaveh A, Zakian P (2015) Stability based optimum design of concrete gravity dam using CSS, CBO and ECBO algorithms. Iran Univ Sci Technol 5(4):419–431 Kaveh A, Zakian P (2015) Stability based optimum design of concrete gravity dam using CSS, CBO and ECBO algorithms. Iran Univ Sci Technol 5(4):419–431
go back to reference Masoumi F, Salimi N, Zafari N (2020) Evaluation of Grasshopper optimization algorithm for optimal operation of surface water reservoirs with reliability constraints. Iran J Irrig Drain 14(2):579–592 Masoumi F, Salimi N, Zafari N (2020) Evaluation of Grasshopper optimization algorithm for optimal operation of surface water reservoirs with reliability constraints. Iran J Irrig Drain 14(2):579–592
go back to reference Masoumi F, Esfandmaz S, Zafari N (2021) Investigate the applicability of gray Wolf optimization algorithm in determining the optimal dimensions of concrete dams. Dam Hydroelectr Powerplant 7(27):79–89 Masoumi F, Esfandmaz S, Zafari N (2021) Investigate the applicability of gray Wolf optimization algorithm in determining the optimal dimensions of concrete dams. Dam Hydroelectr Powerplant 7(27):79–89
go back to reference Memarian T, Shahbazi Y (2017) Integrated metaheuristic differential evolution optimization algorithm and Pseudo static analysis of concrete gravity dam. Civil Eng J 3:617–625 CrossRef Memarian T, Shahbazi Y (2017) Integrated metaheuristic differential evolution optimization algorithm and Pseudo static analysis of concrete gravity dam. Civil Eng J 3:617–625 CrossRef
go back to reference Norouzi R, Salmasi F, Arvanaghi H (2020) Uplift pressure and hydraulic gradient in Sabalan Dam. Appl Water Sci 10(5):1–12 CrossRef Norouzi R, Salmasi F, Arvanaghi H (2020) Uplift pressure and hydraulic gradient in Sabalan Dam. Appl Water Sci 10(5):1–12 CrossRef
go back to reference Rampal A, Halder P, Manna B, Sharma KG (2020) Static and coupled hydro-mechanical analyses of concrete gravity dam resting on jointed rock foundation. Geotech Geol Eng 38:4111–4127 CrossRef Rampal A, Halder P, Manna B, Sharma KG (2020) Static and coupled hydro-mechanical analyses of concrete gravity dam resting on jointed rock foundation. Geotech Geol Eng 38:4111–4127 CrossRef
go back to reference Salmasi F (2011) Design of gravity dam by genetic algorithms. Int J Civ Environ Eng 3:187–192 Salmasi F (2011) Design of gravity dam by genetic algorithms. Int J Civ Environ Eng 3:187–192
go back to reference Seifollahi M, Abbasi S, Lotfollahi-yaghin MA, Daneshfaraz R, Kalateh F, Fahimi-Farzam M (2021b) Investigation of the performance of soft computing methods in estimating the crest settlement of rockfill dam with the central core. JWSS - J Water Soil Sci. (Accepted to online publish). Seifollahi M, Abbasi S, Lotfollahi-yaghin MA, Daneshfaraz R, Kalateh F, Fahimi-Farzam M (2021b) Investigation of the performance of soft computing methods in estimating the crest settlement of rockfill dam with the central core. JWSS - J Water Soil Sci. (Accepted to online publish).
go back to reference Seifollahi M, Abbasi S, Kalateh F (2021c) Prediction of settlement caused by earth dam crest earthquake using hybrid model of wavelet and artificial neural network. In: 12th International Congress on Civil Engineering Conference Ferdowsi University of Mashhad, 12–14 July 2021c, Mashhad, Iran. Seifollahi M, Abbasi S, Kalateh F (2021c) Prediction of settlement caused by earth dam crest earthquake using hybrid model of wavelet and artificial neural network. In: 12th International Congress on Civil Engineering Conference Ferdowsi University of Mashhad, 12–14 July 2021c, Mashhad, Iran.
go back to reference Shakouri B, Mohammadi M (2020) Evaluation of penetration depth for cutoff walls in the core of earth dams. J Geotech Geol Eng 38(1):151–167 CrossRef Shakouri B, Mohammadi M (2020) Evaluation of penetration depth for cutoff walls in the core of earth dams. J Geotech Geol Eng 38(1):151–167 CrossRef
Metadata
Title
Optimization of Gravity Concrete Dams Using the Grasshopper Algorithm (Case Study: Koyna Dam)
Authors
Mehran Seifollahi
Salim Abbasi
John Abraham
Reza Norouzi
Rasoul Daneshfaraz
Mohammad-Ali Lotfollahi-Yaghin
Ahmet Alkan
Publication date
04-07-2022
Publisher
Springer International Publishing
Published in
Geotechnical and Geological Engineering / Issue 11/2022
Print ISSN: 0960-3182
Electronic ISSN: 1573-1529
DOI
https://doi.org/10.1007/s10706-022-02227-1

Other articles of this Issue 11/2022

Geotechnical and Geological Engineering 11/2022 Go to the issue