Skip to main content
Top

2015 | OriginalPaper | Chapter

5. Optimization of On-Chip Polymerase Chain Reaction

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The amount of Deoxyribonucleic acid (DNA) strands available in the biological sample is a major limitation for many genomic bioanalyses [1–4]. For example, in the study of gene dosage in tumor DNA by comparative genomic hybridization, the analysis procedure requires several hundred nanograms of DNA strands for fluorescent labeling [2]. It is difficult to obtain such a large amount of DNA strands directly from biological samples. To overcome this problem, the polymerase chain reaction (PCR) technique is used as the first step for these bioanalyses to amplify (replicate) the initial DNA strands [2, 3, 5]. Based on the categories of operations involved, the procedure of genomic analysis can be divided into three separate stages [6]. The first stage is sample preparation for PCR; the second stage is amplification of the DNA strands; after DNA amplification, the third stage includes the subsequent operations, such as mixing the droplet that contains DNA strands with other reagent droplets, detecting the concentration of intermediate product droplets, and the hybridization of the amplified DNA sequences [4].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y. Luo, B. Bhattacharya, T.-Y. Ho and K. Chakrabarty, “Optimization of polymerase chain reaction on a cyberphysical digital microfluidic biochip”, Proc. IEEE/ACM International Conference on Computer-Aided Design, pp. 622–629, 2013. Y. Luo, B. Bhattacharya, T.-Y. Ho and K. Chakrabarty, “Optimization of polymerase chain reaction on a cyberphysical digital microfluidic biochip”, Proc. IEEE/ACM International Conference on Computer-Aided Design, pp. 622–629, 2013.
2.
go back to reference J. Lage, J. Leamon, T. Pejovic, S. Hamann, M. Lacey, D. Dillon, et. al, “Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array-GH”, Genome Res. Issue 13, pp. 294–307, 2003. J. Lage, J. Leamon, T. Pejovic, S. Hamann, M. Lacey, D. Dillon, et. al, “Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array-GH”, Genome Res. Issue 13, pp. 294–307, 2003.
3.
go back to reference J. Berthier, Micro-Drops and Digital Microfluidics, Norwich, NY: William Andrew, 2008. J. Berthier, Micro-Drops and Digital Microfluidics, Norwich, NY: William Andrew, 2008.
4.
go back to reference I. Erill, S. Campoy, J. Rus, L. Fonseca, A. Ivorra, Z. Navarro, J. Plaza, J. Aguilo, and J. Barbe, “Development of a CMOS-compatible PCR chip: comparison of design and system strategies”, Journal of Micromechanics and Microengineering, Volume 14, Number 11, pp. 1–11, 2014. I. Erill, S. Campoy, J. Rus, L. Fonseca, A. Ivorra, Z. Navarro, J. Plaza, J. Aguilo, and J. Barbe, “Development of a CMOS-compatible PCR chip: comparison of design and system strategies”, Journal of Micromechanics and Microengineering, Volume 14, Number 11, pp. 1–11, 2014.
5.
go back to reference C. Zhang and D. Xing, “Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends”, Nucleic Acids Research, Vol. 35, No. 13, pp. 4223–4237, 2007.CrossRef C. Zhang and D. Xing, “Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends”, Nucleic Acids Research, Vol. 35, No. 13, pp. 4223–4237, 2007.CrossRef
6.
go back to reference D. Brassard, L. Malic, C. Miville-Godin, F. Normandin, and T. Veres, “Advanced EWOD-based digital microfluidic system for multiplexed analysis of biomolecular interactions”, IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 153–156, 2011. D. Brassard, L. Malic, C. Miville-Godin, F. Normandin, and T. Veres, “Advanced EWOD-based digital microfluidic system for multiplexed analysis of biomolecular interactions”, IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 153–156, 2011.
7.
go back to reference D. Jary, A. Chollat-Namy, Y. Fouillet, J. Boutet, C. Chabrol, G. Castellan, D. Gasparutto, and C. Peponnet, “DNA repair enzyme analysis on EWOD fluidic microprocessor”, Proceedings of the NSTI-Nanotech Conference, vol. 2, pp. 554–557, 2006. D. Jary, A. Chollat-Namy, Y. Fouillet, J. Boutet, C. Chabrol, G. Castellan, D. Gasparutto, and C. Peponnet, “DNA repair enzyme analysis on EWOD fluidic microprocessor”, Proceedings of the NSTI-Nanotech Conference, vol. 2, pp. 554–557, 2006.
8.
go back to reference K. Chakrabarty and F. Su, Digital Microfluidic Biochips: Synthesis, Testing, and Reconfiguration Techniques, Boca Raton, FL: CRC Press, 2006.CrossRef K. Chakrabarty and F. Su, Digital Microfluidic Biochips: Synthesis, Testing, and Reconfiguration Techniques, Boca Raton, FL: CRC Press, 2006.CrossRef
9.
go back to reference Y. Luo, K. Chakrabarty, and T.-Y. Ho, “Dictionary-based error recovery in cyberphysical digital-microfluidic biochips”, Proc. IEEE/ACM International Conference on Computer-Aided Design, pp. 369–376, 2012. Y. Luo, K. Chakrabarty, and T.-Y. Ho, “Dictionary-based error recovery in cyberphysical digital-microfluidic biochips”, Proc. IEEE/ACM International Conference on Computer-Aided Design, pp. 369–376, 2012.
10.
go back to reference R. Liu, J. Yang, R. Lenigk, J. Bonanno, and P. Grodzinski, “Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection”, Anal. Chem., Issue 76, pp. 1824–1831, 2004. R. Liu, J. Yang, R. Lenigk, J. Bonanno, and P. Grodzinski, “Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection”, Anal. Chem., Issue 76, pp. 1824–1831, 2004.
11.
go back to reference L. Malic, T. Veres, and M. Tabrizian, “Detection of DNA hybridization on a configurable digital microfluidic biochip using SPR imaging”, International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp. 829–831, 2008. L. Malic, T. Veres, and M. Tabrizian, “Detection of DNA hybridization on a configurable digital microfluidic biochip using SPR imaging”, International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp. 829–831, 2008.
12.
go back to reference L. Malic, T. Veres, and M. Tabrizian, “Two-dimensional droplet-based surface plasmon resonance imaging using electrowetting-on-dielectric microfluidics”, Lab on a Chip, Issue 9, pp. 473–475, 2009. L. Malic, T. Veres, and M. Tabrizian, “Two-dimensional droplet-based surface plasmon resonance imaging using electrowetting-on-dielectric microfluidics”, Lab on a Chip, Issue 9, pp. 473–475, 2009.
13.
go back to reference K. Choi, A. Ng, R. Fobel, and A. Wheeler, “Digital microfluidics”, Annual Review of Analytical Chemistry, Vol. 5, pp. 413–440, 2012.CrossRef K. Choi, A. Ng, R. Fobel, and A. Wheeler, “Digital microfluidics”, Annual Review of Analytical Chemistry, Vol. 5, pp. 413–440, 2012.CrossRef
14.
go back to reference M. Shamsi, K. Choi, A. Ng, A. Wheeler, “A digital microfluidic electrochemical immunoassay”, Lab on a Chip, Issue 14, pp. 547–554, 2014. M. Shamsi, K. Choi, A. Ng, A. Wheeler, “A digital microfluidic electrochemical immunoassay”, Lab on a Chip, Issue 14, pp. 547–554, 2014.
15.
go back to reference S. Koster, F. Angile, H. Duan, J. Agresti, A. Wintner, C. Schmitz, A. Rowat, C. Merten, D. Pisignano, A. Griffiths. and D. Weitz, “Drop-based microfluidic devices for encapsulation of single cells”, Lab on a Chip, vol. 8, pp. 1110–1115, 2008.CrossRef S. Koster, F. Angile, H. Duan, J. Agresti, A. Wintner, C. Schmitz, A. Rowat, C. Merten, D. Pisignano, A. Griffiths. and D. Weitz, “Drop-based microfluidic devices for encapsulation of single cells”, Lab on a Chip, vol. 8, pp. 1110–1115, 2008.CrossRef
16.
go back to reference R. Daniel, M. Dines, and H. Petach, “The denaturation and degradation of stable enzymes at high temperatures”, Biochem J., vol. 317, Issue 1, pp. 1–11, 1996. R. Daniel, M. Dines, and H. Petach, “The denaturation and degradation of stable enzymes at high temperatures”, Biochem J., vol. 317, Issue 1, pp. 1–11, 1996.
17.
go back to reference F. Ji, M. Juntunen, and I. Hietanen, “Evaluation of electrical crosstalk in high-density photodiode arrays for X-ray imaging applications”, Nuclear Instruments and Methods in Physics Research, volume 610, issue 1, pp. 28–30, 2009. F. Ji, M. Juntunen, and I. Hietanen, “Evaluation of electrical crosstalk in high-density photodiode arrays for X-ray imaging applications”, Nuclear Instruments and Methods in Physics Research, volume 610, issue 1, pp. 28–30, 2009.
18.
go back to reference R. Evans et al., “Optical detection heterogeneously integrated with a coplanar digital microfluidic lab-on-a-chip platform”, Proc. IEEE Sensors Conf., pp. 423–426, Oct. 2007. R. Evans et al., “Optical detection heterogeneously integrated with a coplanar digital microfluidic lab-on-a-chip platform”, Proc. IEEE Sensors Conf., pp. 423–426, Oct. 2007.
19.
go back to reference S. Koester, L. Schares, C. Schow, G. Dehlinger, and R. John, “Temperature-dependent analysis of Ge-on-SOI photodetectors and receivers”, IEEE International Conference on Group IV Photonics, pp. 179–181, 2006. S. Koester, L. Schares, C. Schow, G. Dehlinger, and R. John, “Temperature-dependent analysis of Ge-on-SOI photodetectors and receivers”, IEEE International Conference on Group IV Photonics, pp. 179–181, 2006.
20.
go back to reference C. Zhang and D. Xing, “Single-molecule DNA amplification and analysis using microfluidics”, Chem Rev., Issue. 110, vol. 8, pp. 4910–4947, 2010. C. Zhang and D. Xing, “Single-molecule DNA amplification and analysis using microfluidics”, Chem Rev., Issue. 110, vol. 8, pp. 4910–4947, 2010.
21.
go back to reference D. Woide, A. Zink, and S. Thalhammer, “Technical note: PCR analysis of minimum target amount of ancient DNA”, Am J Phys Anthropol, volume 142, Issue 2, pp. 321–327, 2010. D. Woide, A. Zink, and S. Thalhammer, “Technical note: PCR analysis of minimum target amount of ancient DNA”, Am J Phys Anthropol, volume 142, Issue 2, pp. 321–327, 2010.
22.
go back to reference J. Webster, M. Burns, D. Burke, and C. Mastrangelo, “Monolithic capillary electrophoresis device with integrated fluorescence detector”, Anal Chem., volume 73, Issue 7, pp. 1622–1626, 2001. J. Webster, M. Burns, D. Burke, and C. Mastrangelo, “Monolithic capillary electrophoresis device with integrated fluorescence detector”, Anal Chem., volume 73, Issue 7, pp. 1622–1626, 2001.
23.
go back to reference U.-C. Yi and C.-J. Kim, “Soft printing of droplets pre-metered by electrowetting”, Sensors and Actuators A: Physical, Volume 114, Issues 2–3, pp. 347–354, 2004. U.-C. Yi and C.-J. Kim, “Soft printing of droplets pre-metered by electrowetting”, Sensors and Actuators A: Physical, Volume 114, Issues 2–3, pp. 347–354, 2004.
24.
go back to reference I. Erill, S. Campoy, J. Rus, L. Fonseca, A. Ivorra, Z. Navarro, J. Plaza, J. Aguilo, and J. Barbe, “Development of a CMOS-compatible PCR chip: comparison of design and system strategies”, Journal of Micromechanics and Microengineering, Volume 14, Number 11, pp. 1–11, 2004. I. Erill, S. Campoy, J. Rus, L. Fonseca, A. Ivorra, Z. Navarro, J. Plaza, J. Aguilo, and J. Barbe, “Development of a CMOS-compatible PCR chip: comparison of design and system strategies”, Journal of Micromechanics and Microengineering, Volume 14, Number 11, pp. 1–11, 2004.
25.
go back to reference M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Company, 1979. M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Company, 1979.
26.
go back to reference P. Bhowmick, A. Biswas, B. Bhattacharya, “ICE: The isothetic convex envelope of a digital object”, International Conference on Computing: Theory and Applications, pp. 219–223, 2007. P. Bhowmick, A. Biswas, B. Bhattacharya, “ICE: The isothetic convex envelope of a digital object”, International Conference on Computing: Theory and Applications, pp. 219–223, 2007.
27.
go back to reference S. Roy, B. Bhattacharya, P. Chakrabarti, and K. Chakrabarty, “Layout-aware solution preparation for biochemical analysis on a digital microfluidic biochip”, Proc. IEEE International Conference on VLSI Design, pp. 171–176, 2011. S. Roy, B. Bhattacharya, P. Chakrabarti, and K. Chakrabarty, “Layout-aware solution preparation for biochemical analysis on a digital microfluidic biochip”, Proc. IEEE International Conference on VLSI Design, pp. 171–176, 2011.
28.
go back to reference Y.-L. Hsieh, T.-Y. Ho, and K. Chakrabarty, “Design Methodology for Sample Preparation on Digital Microfluidic Biochips”, IEEE International Conference on Computer Design, pp. 189–194, 2012. Y.-L. Hsieh, T.-Y. Ho, and K. Chakrabarty, “Design Methodology for Sample Preparation on Digital Microfluidic Biochips”, IEEE International Conference on Computer Design, pp. 189–194, 2012.
29.
go back to reference Y. Luo, K. Chakrabarty, and T.-Y. Ho, “Design of cyberphysical digital-microfluidic biochips under completion-time uncertainties in fluidic operations”, pp. 44–50, Proc. IEEE/ACM Design Automation Conference, 2013. Y. Luo, K. Chakrabarty, and T.-Y. Ho, “Design of cyberphysical digital-microfluidic biochips under completion-time uncertainties in fluidic operations”, pp. 44–50, Proc. IEEE/ACM Design Automation Conference, 2013.
30.
go back to reference P. Paik, V. Pamula, and R. Fair, “Rapid droplet mixers for digital microfluidic systems”, Lab on a Chip, vol. 3, pp. 253–259, 2003.CrossRef P. Paik, V. Pamula, and R. Fair, “Rapid droplet mixers for digital microfluidic systems”, Lab on a Chip, vol. 3, pp. 253–259, 2003.CrossRef
31.
go back to reference P. Paik, V. Pamula, M. Pollack, and R. Fair, “Electrowetting-based droplet mixers for microfluidic systems”, Lab on a Chip, vol. 3, Issue 1, pp. 28–33, 2003.CrossRef P. Paik, V. Pamula, M. Pollack, and R. Fair, “Electrowetting-based droplet mixers for microfluidic systems”, Lab on a Chip, vol. 3, Issue 1, pp. 28–33, 2003.CrossRef
32.
go back to reference E. Bolton, G. Sayler, D. Nivens, J. Rochelle, S. Ripp, and M. Simpson, “Integrated CMOS photodetectors and signal processing for very low-level chemical sensing with the bioluminescent bioreporter integrated circuit”, Sens Actuators B Chem, vol. 85, Issue 1, pp. 179–185, 2002.CrossRef E. Bolton, G. Sayler, D. Nivens, J. Rochelle, S. Ripp, and M. Simpson, “Integrated CMOS photodetectors and signal processing for very low-level chemical sensing with the bioluminescent bioreporter integrated circuit”, Sens Actuators B Chem, vol. 85, Issue 1, pp. 179–185, 2002.CrossRef
33.
go back to reference P. Paik, V. Pamula and R. Fair, “Rapid droplet mixers for digital microfluidic systems”, Lab on a Chip, vol. 3, pp. 253–259, 2003.CrossRef P. Paik, V. Pamula and R. Fair, “Rapid droplet mixers for digital microfluidic systems”, Lab on a Chip, vol. 3, pp. 253–259, 2003.CrossRef
35.
go back to reference Y.-L. Hsieh, T.-Y. Ho and K. Chakrabarty, “A reagent-saving mixing algorithm for preparing multiple-target biochemical samples using digital microfluidics”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, pp. 1656–1669, 2012.CrossRef Y.-L. Hsieh, T.-Y. Ho and K. Chakrabarty, “A reagent-saving mixing algorithm for preparing multiple-target biochemical samples using digital microfluidics”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, pp. 1656–1669, 2012.CrossRef
Metadata
Title
Optimization of On-Chip Polymerase Chain Reaction
Authors
Yan Luo
Krishnendu Chakrabarty
Tsung-Yi Ho
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-09006-1_5