Skip to main content
Top

2024 | OriginalPaper | Chapter

Optimization of Room Air Temperature in Stratum-Ventilated Rooms for Thermal Comfort and Energy Saving

Authors : Sheng Zhang, Xia Zhang, Yong Cheng, Zhaosong Fang, Chao Huan, Zhang Lin

Published in: Stratum Ventilation—Advanced Air Distribution for Low-Carbon and Healthy Buildings

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Combining elevated room air temperature with increased room air velocity is commonly used to achieve thermal comfort and energy efficiency. However, excessively high room air temperatures negatively impact the energy performance of air conditioning systems by increasing the energy consumption of ventilation fans. Existing models for evaluating thermal comfort in the field of building energy performance often do not accurately account for elevated room air velocity, as most building simulation tools and management systems lack precise information on this parameter. This chapter introduces a method to optimize room air temperature to obtain desired thermal conditions and minimize energy consumption in air conditioning systems for stratum ventilation. Firstly, the Predicted Mean Vote (PMV) model is modified to include room air temperature and supply airflow rate. Secondly, a specific supply airflow rate is determined for each room air temperature to achieve the desired thermal condition by utilizing the modified PMV, and the room air temperature is optimized to minimize energy consumption. The case study results indicate that the energy consumption of the air conditioning system can be reduced by 7.8% while maintaining the intended thermal comfort conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Huang Y, Niu JL (2016) A review of the advance of HVAC technologies as witnessed in ENB publications in the period from 1987 to 2014. Energy Build 130:33–45CrossRef Huang Y, Niu JL (2016) A review of the advance of HVAC technologies as witnessed in ENB publications in the period from 1987 to 2014. Energy Build 130:33–45CrossRef
4.
go back to reference Yamtraipat N, Khedari J, Hirunlabh J (2005) Thermal comfort standards for air conditioned buildings in hot and humid Thailand considering additional factors of acclimatization and education level. Solar Energy 78(4 SPEC. ISS.):504–517 Yamtraipat N, Khedari J, Hirunlabh J (2005) Thermal comfort standards for air conditioned buildings in hot and humid Thailand considering additional factors of acclimatization and education level. Solar Energy 78(4 SPEC. ISS.):504–517
5.
go back to reference Kwong QJ, Adam NM, Sahari BB (2014) Thermal comfort assessment and potential for energy efficiency enhancement in modern tropical buildings: a review. Energy Build 68(PARTA):547–557 Kwong QJ, Adam NM, Sahari BB (2014) Thermal comfort assessment and potential for energy efficiency enhancement in modern tropical buildings: a review. Energy Build 68(PARTA):547–557
6.
go back to reference Djamila H (2017) Indoor thermal comfort predictions: selected issues and trends. Renew Sustain Energy Rev 74:569–580CrossRef Djamila H (2017) Indoor thermal comfort predictions: selected issues and trends. Renew Sustain Energy Rev 74:569–580CrossRef
7.
go back to reference Cândido C, de Dear RJ, Lamberts R, Bittencourt L (2010) Air movement acceptability limits and thermal comfort in Brazil’s hot humid climate zone. Build Environ 45(1):222–229CrossRef Cândido C, de Dear RJ, Lamberts R, Bittencourt L (2010) Air movement acceptability limits and thermal comfort in Brazil’s hot humid climate zone. Build Environ 45(1):222–229CrossRef
8.
go back to reference Fong KF, Chow TT, Li C, Lin Z, Chan LS (2010) Effect of neutral temperature on energy saving of centralized air-conditioning systems in subtropical Hong Kong. Appl Therm Eng 30(13):1659–1665CrossRef Fong KF, Chow TT, Li C, Lin Z, Chan LS (2010) Effect of neutral temperature on energy saving of centralized air-conditioning systems in subtropical Hong Kong. Appl Therm Eng 30(13):1659–1665CrossRef
9.
go back to reference Lin Z, Lee CK, Fong S, Chow TT, Yao T, Chan ALS (2011) Comparison of annual energy performances with different ventilation methods for cooling. Energy Build 43(1):130–136CrossRef Lin Z, Lee CK, Fong S, Chow TT, Yao T, Chan ALS (2011) Comparison of annual energy performances with different ventilation methods for cooling. Energy Build 43(1):130–136CrossRef
10.
go back to reference Lee CK, Fong KF, Lin Z, Chow TT (2013) Year-round energy saving potential of stratum ventilated classrooms with temperature and humidity control. HVAC R Res 19(8):986–991CrossRef Lee CK, Fong KF, Lin Z, Chow TT (2013) Year-round energy saving potential of stratum ventilated classrooms with temperature and humidity control. HVAC R Res 19(8):986–991CrossRef
11.
go back to reference Fong ML, Lin Z, Fong KF, Chow TT, Yao T (2011) Evaluation of thermal comfort conditions in a classroom with three ventilation methods. Indoor Air 21(3):231–239CrossRef Fong ML, Lin Z, Fong KF, Chow TT, Yao T (2011) Evaluation of thermal comfort conditions in a classroom with three ventilation methods. Indoor Air 21(3):231–239CrossRef
12.
go back to reference Fong ML, Lin Z, Fong KF, Hanby V, Greenough R (2017) Life cycle assessment for three ventilation methods. Build Environ 116:73–88CrossRef Fong ML, Lin Z, Fong KF, Hanby V, Greenough R (2017) Life cycle assessment for three ventilation methods. Build Environ 116:73–88CrossRef
13.
go back to reference Cheng Y, Lin Z, Fong AML (2015) Effects of temperature and supply airflow rate on thermal comfort in a stratum-ventilated room. Build Environ 92:269–277CrossRef Cheng Y, Lin Z, Fong AML (2015) Effects of temperature and supply airflow rate on thermal comfort in a stratum-ventilated room. Build Environ 92:269–277CrossRef
14.
go back to reference Fong ML, Hanby V, Greenough R, Lin Z, Cheng Y (2015) Acceptance of thermal conditions and energy use of three ventilation strategies with six exhaust configurations for the classroom. Build Environ 94:606–619CrossRef Fong ML, Hanby V, Greenough R, Lin Z, Cheng Y (2015) Acceptance of thermal conditions and energy use of three ventilation strategies with six exhaust configurations for the classroom. Build Environ 94:606–619CrossRef
15.
go back to reference Yang L, Yan H, Lam JC (2014) Thermal comfort and building energy consumption implications—a review. Appl Energy 115:164–173CrossRef Yang L, Yan H, Lam JC (2014) Thermal comfort and building energy consumption implications—a review. Appl Energy 115:164–173CrossRef
16.
go back to reference Djongyang N, Tchinda R, Njomo D (2010) Thermal comfort: a review paper. Renew Sustain Energy Rev 14(9):X2626-2640CrossRef Djongyang N, Tchinda R, Njomo D (2010) Thermal comfort: a review paper. Renew Sustain Energy Rev 14(9):X2626-2640CrossRef
17.
go back to reference Van Hoof J (2008) Forty years of Fanger’s model of thermal comfort: comfort for all? Indoor Air 18(3):182–201CrossRef Van Hoof J (2008) Forty years of Fanger’s model of thermal comfort: comfort for all? Indoor Air 18(3):182–201CrossRef
18.
go back to reference Kim J, Hong T, Jeong J, Koo C, Jeong K (2016) An optimization model for selecting the optimal green systems by considering the thermal comfort and energy consumption. Appl Energy 169:682–695CrossRef Kim J, Hong T, Jeong J, Koo C, Jeong K (2016) An optimization model for selecting the optimal green systems by considering the thermal comfort and energy consumption. Appl Energy 169:682–695CrossRef
19.
go back to reference ANSI/ASHRAE Standard 55-2020 (2020) Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating, and Airconditioning Engineers, Inc., Atlanta, USA ANSI/ASHRAE Standard 55-2020 (2020) Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating, and Airconditioning Engineers, Inc., Atlanta, USA
20.
go back to reference European Committee for Standardization (2007) Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics European Committee for Standardization (2007) Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics
21.
go back to reference Hasan MH, Alsaleem F, Rafaie M (2016) Sensitivity study for the PMV thermal comfort model and the use of wearable devices biometric data for metabolic rate estimation. Build Environ 110:173–183CrossRef Hasan MH, Alsaleem F, Rafaie M (2016) Sensitivity study for the PMV thermal comfort model and the use of wearable devices biometric data for metabolic rate estimation. Build Environ 110:173–183CrossRef
22.
go back to reference d’Ambrosio Alfano FR, Palella BI, Riccio G (2011) The role of measurement accuracy on the thermal environment assessment by means of PMV index. Build Environ 46(7):1361–1369 d’Ambrosio Alfano FR, Palella BI, Riccio G (2011) The role of measurement accuracy on the thermal environment assessment by means of PMV index. Build Environ 46(7):1361–1369
23.
go back to reference VERSION, TRNSYS. 16.0–User Manual. Solar Energy Laboratory, University of Wisconsin, Madison und Transsolar (2013) VERSION, TRNSYS. 16.0–User Manual. Solar Energy Laboratory, University of Wisconsin, Madison und Transsolar (2013)
24.
go back to reference Crawley DB, Pedersen CO, Lawrie LK, Winkelmann FC (2000) Energy plus: energy simulation program. ASHRAE J 42(4):49–56 Crawley DB, Pedersen CO, Lawrie LK, Winkelmann FC (2000) Energy plus: energy simulation program. ASHRAE J 42(4):49–56
25.
go back to reference Chen X, Wang Q, Srebric J (2016) Occupant feedback based model predictive control for thermal comfort and energy optimization: a chamber experimental evaluation. Appl Energy 164:341–351CrossRef Chen X, Wang Q, Srebric J (2016) Occupant feedback based model predictive control for thermal comfort and energy optimization: a chamber experimental evaluation. Appl Energy 164:341–351CrossRef
26.
go back to reference Atam E (2017) Current software barriers to advanced model-based control design for energy-efficient buildings. Renew Sustain Energy Rev 73:1031–1040CrossRef Atam E (2017) Current software barriers to advanced model-based control design for energy-efficient buildings. Renew Sustain Energy Rev 73:1031–1040CrossRef
27.
go back to reference Carlucci S, Pagliano L (2012) A review of indices for the long-term evaluation of the general thermal comfort conditions in buildings. Energy Build 53:194–205CrossRef Carlucci S, Pagliano L (2012) A review of indices for the long-term evaluation of the general thermal comfort conditions in buildings. Energy Build 53:194–205CrossRef
28.
go back to reference Peeters L, Dear Rd, Hensen J, D’Haeseleer W (2009) Thermal comfort in residential buildings: comfort values and scales for building energy simulation. Appl Energy 86(5):772–780 Peeters L, Dear Rd, Hensen J, D’Haeseleer W (2009) Thermal comfort in residential buildings: comfort values and scales for building energy simulation. Appl Energy 86(5):772–780
29.
go back to reference Barbeito I, Zaragoza S, Tarrío-Saavedra J, Naya S (2017) Assessing thermal comfort and energy efficiency in buildings by statistical quality control for autocorrelated data. Appl Energy 190:1–17CrossRef Barbeito I, Zaragoza S, Tarrío-Saavedra J, Naya S (2017) Assessing thermal comfort and energy efficiency in buildings by statistical quality control for autocorrelated data. Appl Energy 190:1–17CrossRef
30.
go back to reference Allouche Y, Varga S, Bouden C, Oliveira AC (2017) Dynamic simulation of an integrated solar-driven ejector based air conditioning system with PCM cold storage. Appl Energy 190:600–611CrossRef Allouche Y, Varga S, Bouden C, Oliveira AC (2017) Dynamic simulation of an integrated solar-driven ejector based air conditioning system with PCM cold storage. Appl Energy 190:600–611CrossRef
31.
go back to reference D’Ambrosio Alfano FR, Olesen BW, Palella BI, Riccio G (2014) Thermal comfort: design and assessment for energy saving. Energy Build 81:326–336 D’Ambrosio Alfano FR, Olesen BW, Palella BI, Riccio G (2014) Thermal comfort: design and assessment for energy saving. Energy Build 81:326–336
32.
go back to reference Zhou P, Huang G, Li Z (2014) Demand-based temperature control of large-scale rooms aided by wireless sensor network: energy saving potential analysis. Energy Build 68(PARTA):532–540 Zhou P, Huang G, Li Z (2014) Demand-based temperature control of large-scale rooms aided by wireless sensor network: energy saving potential analysis. Energy Build 68(PARTA):532–540
33.
go back to reference Cheng Y, Lin Z (2016) Experimental investigation into the interaction between the human body and room airflow and its effect on thermal comfort under stratum ventilation. Indoor Air 26(2):274–285CrossRef Cheng Y, Lin Z (2016) Experimental investigation into the interaction between the human body and room airflow and its effect on thermal comfort under stratum ventilation. Indoor Air 26(2):274–285CrossRef
34.
go back to reference Sekhar SC (2016) Thermal comfort in air-conditioned buildings in hot and humid climates—why are we not getting it right? Indoor Air 26(1):138–152MathSciNetCrossRef Sekhar SC (2016) Thermal comfort in air-conditioned buildings in hot and humid climates—why are we not getting it right? Indoor Air 26(1):138–152MathSciNetCrossRef
35.
go back to reference Zhang H, Arens E, Huizenga C, Han T (2010) Thermal sensation and comfort models for non-uniform and transient environments, part III: whole-body sensation and comfort. Build Environ 45(2):399–410CrossRef Zhang H, Arens E, Huizenga C, Han T (2010) Thermal sensation and comfort models for non-uniform and transient environments, part III: whole-body sensation and comfort. Build Environ 45(2):399–410CrossRef
36.
go back to reference Zhang H, Arens E, Huizenga C, Han T (2010) Thermal sensation and comfort models for non-uniform and transient environments: Part I: Local sensation of individual body parts. Build Environ 45(2):380–388CrossRef Zhang H, Arens E, Huizenga C, Han T (2010) Thermal sensation and comfort models for non-uniform and transient environments: Part I: Local sensation of individual body parts. Build Environ 45(2):380–388CrossRef
37.
go back to reference Yao T, Lin Z (2014) An experimental and numerical study on the effect of air terminal types on the performance of stratum ventilation. Build Environ 82:431–441CrossRef Yao T, Lin Z (2014) An experimental and numerical study on the effect of air terminal types on the performance of stratum ventilation. Build Environ 82:431–441CrossRef
38.
go back to reference Cheng Y, Lin Z (2015) Technical feasibility of a stratum-ventilated room for multiple rows of occupants. Build Environ 94:580–592CrossRef Cheng Y, Lin Z (2015) Technical feasibility of a stratum-ventilated room for multiple rows of occupants. Build Environ 94:580–592CrossRef
39.
go back to reference Lin Z, Chow TT, Tsang CF, Fong KF, Chan LS (2009) Stratum ventilation—a potential solution to elevated indoor temperatures. Build Environ 44(11):2256–2269CrossRef Lin Z, Chow TT, Tsang CF, Fong KF, Chan LS (2009) Stratum ventilation—a potential solution to elevated indoor temperatures. Build Environ 44(11):2256–2269CrossRef
40.
go back to reference Lin Z, Yao T, Chow TT, Fong KF, Chan LS (2011) Performance evaluation and design guidelines for stratum ventilation. Build Environ 46(11):2267–2279CrossRef Lin Z, Yao T, Chow TT, Fong KF, Chan LS (2011) Performance evaluation and design guidelines for stratum ventilation. Build Environ 46(11):2267–2279CrossRef
41.
go back to reference Huan C, Wang FH, Lin Z, Wu XZ, Ma ZJ, Wang ZH et al (2016) An experimental investigation into stratum ventilation for the cooling of an office with asymmetrically distributed heat gains. Build Environ 110:76–88CrossRef Huan C, Wang FH, Lin Z, Wu XZ, Ma ZJ, Wang ZH et al (2016) An experimental investigation into stratum ventilation for the cooling of an office with asymmetrically distributed heat gains. Build Environ 110:76–88CrossRef
42.
go back to reference Cheng Y, Fong ML, Yao T, Lin Z, Fong KF (2014) Uniformity of stratum-ventilated thermal environment and thermal sensation. Indoor Air 24(5):521–532CrossRef Cheng Y, Fong ML, Yao T, Lin Z, Fong KF (2014) Uniformity of stratum-ventilated thermal environment and thermal sensation. Indoor Air 24(5):521–532CrossRef
43.
go back to reference Wang X, Lin Z (2015) An experimental investigation into the pull-down performances with different air distributions. Appl Therm Eng 91:151–162CrossRef Wang X, Lin Z (2015) An experimental investigation into the pull-down performances with different air distributions. Appl Therm Eng 91:151–162CrossRef
44.
go back to reference Yao T, Lin Z (2014) An investigation into the performance of fabric diffusers used in stratum ventilation. Build Environ 81:103–111CrossRef Yao T, Lin Z (2014) An investigation into the performance of fabric diffusers used in stratum ventilation. Build Environ 81:103–111CrossRef
45.
go back to reference Cheng Y, Lin Z (2015) Experimental study of airflow characteristics of stratum ventilation in a multi-occupant room with comparison to mixing ventilation and displacement ventilation. Indoor Air 25(6):662–671CrossRef Cheng Y, Lin Z (2015) Experimental study of airflow characteristics of stratum ventilation in a multi-occupant room with comparison to mixing ventilation and displacement ventilation. Indoor Air 25(6):662–671CrossRef
46.
go back to reference Mao N, Pan D, Li Z, Xu Y, Song M, Deng S (2017) A numerical study on influences of building envelope heat gain on operating performances of a bed-based task/ambient air conditioning (TAC) system in energy saving and thermal comfort. Appl Energy 192:213–221CrossRef Mao N, Pan D, Li Z, Xu Y, Song M, Deng S (2017) A numerical study on influences of building envelope heat gain on operating performances of a bed-based task/ambient air conditioning (TAC) system in energy saving and thermal comfort. Appl Energy 192:213–221CrossRef
47.
48.
go back to reference Li X, Niu J, Gao N (2013) Co-occupant’s exposure to exhaled pollutants with two types of personalized ventilation strategies under mixing and displacement ventilation systems. Indoor Air 23(2):162–171CrossRef Li X, Niu J, Gao N (2013) Co-occupant’s exposure to exhaled pollutants with two types of personalized ventilation strategies under mixing and displacement ventilation systems. Indoor Air 23(2):162–171CrossRef
49.
50.
go back to reference Rackes A, Waring MS (2017) Alternative ventilation strategies in U.S. offices: comprehensive assessment and sensitivity analysis of energy saving potential. Build Environ 116:30–44 Rackes A, Waring MS (2017) Alternative ventilation strategies in U.S. offices: comprehensive assessment and sensitivity analysis of energy saving potential. Build Environ 116:30–44
51.
go back to reference Brussels, CEN, CR 1752 (1998) Ventilation for buildings: design criteria for the indoor environment Brussels, CEN, CR 1752 (1998) Ventilation for buildings: design criteria for the indoor environment
52.
go back to reference Huang P, Huang G, Wang Y (2015) HVAC system design under peak load prediction uncertainty using multiple-criterion decision making technique. Energy Build 91:26–36CrossRef Huang P, Huang G, Wang Y (2015) HVAC system design under peak load prediction uncertainty using multiple-criterion decision making technique. Energy Build 91:26–36CrossRef
53.
go back to reference Sun Y, Huang P, Huang G (2015) A multi-criteria system design optimization for net zero energy buildings under uncertainties. Energy Build 97:196–204CrossRef Sun Y, Huang P, Huang G (2015) A multi-criteria system design optimization for net zero energy buildings under uncertainties. Energy Build 97:196–204CrossRef
54.
go back to reference Zhang S, Huang P, Sun Y (2016) A multi-criterion renewable energy system design optimization for net zero energy buildings under uncertainties. Energy 94:654–665CrossRef Zhang S, Huang P, Sun Y (2016) A multi-criterion renewable energy system design optimization for net zero energy buildings under uncertainties. Energy 94:654–665CrossRef
55.
go back to reference Wang S (1998) Dynamic simulation of a building central chilling system and evaluation of EMCS on-line control strategies. Build Environ 33(1):1–20CrossRef Wang S (1998) Dynamic simulation of a building central chilling system and evaluation of EMCS on-line control strategies. Build Environ 33(1):1–20CrossRef
56.
go back to reference Chow TT, Fong KF, Givoni B, Lin Z, Chan ALS (2010) Thermal sensation of Hong Kong people with increased air speed, temperature and humidity in air-conditioned environment. Build Environ 45(10):2177–2183CrossRef Chow TT, Fong KF, Givoni B, Lin Z, Chan ALS (2010) Thermal sensation of Hong Kong people with increased air speed, temperature and humidity in air-conditioned environment. Build Environ 45(10):2177–2183CrossRef
57.
go back to reference Fong KF, Chow TT, Li C (2010) Comfort zone of air speeds and temperatures for air-conditioned environment in the subtropical Hong Kong. Indoor Built Environ 19(3):375–381CrossRef Fong KF, Chow TT, Li C (2010) Comfort zone of air speeds and temperatures for air-conditioned environment in the subtropical Hong Kong. Indoor Built Environ 19(3):375–381CrossRef
58.
go back to reference Buratti C, Ricciardi P, Vergoni M (2013) HVAC systems testing and check: a simplified model to predict thermal comfort conditions in moderate environments. Appl Energy 104:117–127CrossRef Buratti C, Ricciardi P, Vergoni M (2013) HVAC systems testing and check: a simplified model to predict thermal comfort conditions in moderate environments. Appl Energy 104:117–127CrossRef
59.
go back to reference Attia S, Carlucci S (2015) Impact of different thermal comfort models on zero energy residential buildings in hot climate. Energy Build 102:117–128CrossRef Attia S, Carlucci S (2015) Impact of different thermal comfort models on zero energy residential buildings in hot climate. Energy Build 102:117–128CrossRef
Metadata
Title
Optimization of Room Air Temperature in Stratum-Ventilated Rooms for Thermal Comfort and Energy Saving
Authors
Sheng Zhang
Xia Zhang
Yong Cheng
Zhaosong Fang
Chao Huan
Zhang Lin
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6855-4_12