Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 14/2021

18-08-2021 | ELECTRICAL AND MAGNETIC PROPERTIES

Optimization of the Final Annealing Temperature for Cold-Rolled Non-Grain Oriented (CRNO) Electrical Steel through Gleeble Simulation

Authors: A. Gowthaman, V. Pownsamy, Pranav Tripathi, D. Satish Kumar, M. Swaminathan, S. Manjini

Published in: Physics of Metals and Metallography | Issue 14/2021

Login to get access
share
SHARE

Abstract

The magnetic properties of cold rolled non-grain oriented (CRNO) electrical steels are determined by the optimum grain size and preferred texture, which are functions of composition, and thermomechanical processing. The annealing process plays an important role in the final magnetic and mechanical properties of CRNO electrical steels. In this work, methodology has been developed for simulating continuous annealing processes using thermomechanical simulator (Gleeble). Cold rolled full hard samples of CRNO steel with Si values 0.3, 0.7, 1.0, and 1.3% were collected and subjected to plant annealing cycles for the temperature range of 780−1000°C. Subsequently, the microstructure, texture and magnetic properties were measured in simulated samples. This paper explains the effect of Si content and final annealing temperature on the grain size and texture, and its impact on magnetic properties such as core loss and permeability. Core loss decreases with increasing annealing temperature up to a certain value and after that increase. This optimum temperature increases with increases in Si content in steel. Permeability decreases continuously with increasing annealing temperature for all Si steel because of the strengthening of magnetically unfavorable gamma fiber [〈111〉//ND (Normal direction)] texture. An empirical relationship was also developed to determine the optimum annealing temperature as a function of Si content. This off line simulation was successfully used to enhance process optimization of new grades by reducing the requirement of online trials that helps in product customization.
Literature
1.
go back to reference Y. Oda, M. Kohno, and A. Honda, “Recent development of non-oriented electrical steel sheet for automobile electrical devices,” J. Magn. Magn. Mater. 320 (20), 2430–2435 (2008). CrossRef Y. Oda, M. Kohno, and A. Honda, “Recent development of non-oriented electrical steel sheet for automobile electrical devices,” J. Magn. Magn. Mater. 320 (20), 2430–2435 (2008). CrossRef
2.
go back to reference R. Kawalla, A. Stöcker, U. Prahl, X. Wei, J. Dierdorf, G. Hirt, M. Heller, S. Roggenbuck, S. Korte-Kerzel, H. A. Weiss, P. Tröber, L. Böhm, W. Volk, N. Leuning, and K. Hameyer, “Low-loss FeSi sheet for energy-efficient electrical drives,” AIMS Mater. Sci. 5 (6), 1184–1198 (2018). CrossRef R. Kawalla, A. Stöcker, U. Prahl, X. Wei, J. Dierdorf, G. Hirt, M. Heller, S. Roggenbuck, S. Korte-Kerzel, H. A. Weiss, P. Tröber, L. Böhm, W. Volk, N. Leuning, and K. Hameyer, “Low-loss FeSi sheet for energy-efficient electrical drives,” AIMS Mater. Sci. 5 (6), 1184–1198 (2018). CrossRef
3.
go back to reference S. Fortunati, S. Cicale, J. Schneider, A. Franke, and R. Kuwalla, “Developments in the field of electrical steels over the last years,” in Proceedings of the 7th International Conference on Magnetism and Metallurgy (Rome, 2016), pp. 2–7. S. Fortunati, S. Cicale, J. Schneider, A. Franke, and R. Kuwalla, “Developments in the field of electrical steels over the last years,” in Proceedings of the 7th International Conference on Magnetism and Metallurgy (Rome, 2016), pp. 2–7.
4.
go back to reference A. J. Moses, “Energy efficient electrical steels: magnetic performance prediction and optimization,” Scr. Mater. 67 (6), 560–565 (2012). CrossRef A. J. Moses, “Energy efficient electrical steels: magnetic performance prediction and optimization,” Scr. Mater. 67 (6), 560–565 (2012). CrossRef
5.
go back to reference M. Enokizono, N. Teshima, and Y. Mori, “Recent researches on high silicon-iron alloys,” IEEE Trans. Magn. 17 (6), 2857–2862 (1981). CrossRef M. Enokizono, N. Teshima, and Y. Mori, “Recent researches on high silicon-iron alloys,” IEEE Trans. Magn. 17 (6), 2857–2862 (1981). CrossRef
6.
go back to reference B. Verlinden, J. Driver, I. Samajdar, and R. D. Doherty, Thermo-Mechanical Processing of Metallic Materials, 1st ed. (Elsevier, Amsterdam, 2007). B. Verlinden, J. Driver, I. Samajdar, and R. D. Doherty, Thermo-Mechanical Processing of Metallic Materials, 1st ed. (Elsevier, Amsterdam, 2007).
7.
go back to reference B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials (Wiley, Chichester, 2009). B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials (Wiley, Chichester, 2009).
8.
go back to reference F. J. G. Landgraf, “Nonoriented electrical steels,” JOM 64 (7), 764–771 (2012). CrossRef F. J. G. Landgraf, “Nonoriented electrical steels,” JOM 64 (7), 764–771 (2012). CrossRef
9.
go back to reference P. Ghosh, R. R. Chromik, A. M. Knight, and S. G. Wakade, “Effect of metallurgical factors on the bulk magnetic properties of non-oriented electrical steels,” J. Magn. Magn. Mater. 356, 42–51 (2014). CrossRef P. Ghosh, R. R. Chromik, A. M. Knight, and S. G. Wakade, “Effect of metallurgical factors on the bulk magnetic properties of non-oriented electrical steels,” J. Magn. Magn. Mater. 356, 42–51 (2014). CrossRef
10.
go back to reference I. V. Gervas’eva and V. A. Zimin, “Textural and structural transformations in nonoriented electrical steel,” Phys. Met. Metallogr. 108 (5), 455–465 (2009). CrossRef I. V. Gervas’eva and V. A. Zimin, “Textural and structural transformations in nonoriented electrical steel,” Phys. Met. Metallogr. 108 (5), 455–465 (2009). CrossRef
11.
go back to reference G. S. Korzunin, R. B. Puzhevich, and M. B. Tsyrlin, “Effect of mechanical stresses on the magnetic properties of anisotropic electrical steel,” Phys. Met. Metallogr. 103 (2), 142–151 (2007). CrossRef G. S. Korzunin, R. B. Puzhevich, and M. B. Tsyrlin, “Effect of mechanical stresses on the magnetic properties of anisotropic electrical steel,” Phys. Met. Metallogr. 103 (2), 142–151 (2007). CrossRef
12.
go back to reference M. Shiozaki and Y. Kurosaki, “The effects of grain size on the magnetic properties of nonoriented electrical steel sheets,” J. Mater. Eng. 11 (1), 37–43 (1989). CrossRef M. Shiozaki and Y. Kurosaki, “The effects of grain size on the magnetic properties of nonoriented electrical steel sheets,” J. Mater. Eng. 11 (1), 37–43 (1989). CrossRef
13.
go back to reference M. Hoelscher, D. Raabe, and K. Luecke, “Rolling and recrystallization textures of bcc steels,” Steel Res. 62 (12), 567–575 (1991). CrossRef M. Hoelscher, D. Raabe, and K. Luecke, “Rolling and recrystallization textures of bcc steels,” Steel Res. 62 (12), 567–575 (1991). CrossRef
14.
go back to reference R. PremKumar, I. Samajdar, N. N. Viswanathan, V. Singal, and V. Seshadri, “Relative effect(s) of texture and grain size on magnetic properties in a low silicon non-grain oriented electrical steel,” J. Magn. Magn. Mater. 264 (1), 75–85 (2003). CrossRef R. PremKumar, I. Samajdar, N. N. Viswanathan, V. Singal, and V. Seshadri, “Relative effect(s) of texture and grain size on magnetic properties in a low silicon non-grain oriented electrical steel,” J. Magn. Magn. Mater. 264 (1), 75–85 (2003). CrossRef
15.
go back to reference K. Ray and P. Ghosh, “Texture in the design of advanced steels,” Trans. Indian Inst. Met. 66 (5–6), 641–653 (2013). CrossRef K. Ray and P. Ghosh, “Texture in the design of advanced steels,” Trans. Indian Inst. Met. 66 (5–6), 641–653 (2013). CrossRef
16.
go back to reference J. Barros, J. Schneider, K. Verbeken, and Y. Houbaert, “On the correlation between microstructure and magnetic losses in electrical steel,” J. Magn. Magn. Mater. 320 (20), 2490–2493 (2008). CrossRef J. Barros, J. Schneider, K. Verbeken, and Y. Houbaert, “On the correlation between microstructure and magnetic losses in electrical steel,” J. Magn. Magn. Mater. 320 (20), 2490–2493 (2008). CrossRef
17.
go back to reference S. Da Costa Paolinelli, M. A. Da Cunha, and A. Barros Cota, “The influence of hot rolling finishing temperature on the structure and magnetic properties of 2.0%Si non-oriented silicon steel,” Mater. Sci. Forum 559, 787–792 (2007). CrossRef S. Da Costa Paolinelli, M. A. Da Cunha, and A. Barros Cota, “The influence of hot rolling finishing temperature on the structure and magnetic properties of 2.0%Si non-oriented silicon steel,” Mater. Sci. Forum 559, 787–792 (2007). CrossRef
18.
go back to reference I. V. Gervasyeva, V. A. Milyutin, F. V. Mineyev, and Y. Y. Babushko, “Assessment of the textured state of the nonoriented electrical steel for electromobiles and the effect of the texture on the basic magnetic characteristics,” Phys. Met. Metallogr. 121 (7), 618–623 (2020). CrossRef I. V. Gervasyeva, V. A. Milyutin, F. V. Mineyev, and Y. Y. Babushko, “Assessment of the textured state of the nonoriented electrical steel for electromobiles and the effect of the texture on the basic magnetic characteristics,” Phys. Met. Metallogr. 121 (7), 618–623 (2020). CrossRef
19.
go back to reference R. K. Ray, J. J. Jonas, and R. E. Hook, “Cold rolling and annealing textures in low carbon and extra low carbon steels,” Int. Mater. Rev. 39 (4), 129–172 (1994). CrossRef R. K. Ray, J. J. Jonas, and R. E. Hook, “Cold rolling and annealing textures in low carbon and extra low carbon steels,” Int. Mater. Rev. 39 (4), 129–172 (1994). CrossRef
20.
go back to reference A. Rollett, F. Humphreys, G. S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2 ed. (Elsevier, Amsterdam, 2004). A. Rollett, F. Humphreys, G. S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2 ed. (Elsevier, Amsterdam, 2004).
21.
go back to reference B. Hutchinson and D. Artymowicz, “Mechanisms and modelling of microstructure/texture evolution in interstitial-free steel sheets,” ISIJ Int. 41 (6), 533–541 (2001). CrossRef B. Hutchinson and D. Artymowicz, “Mechanisms and modelling of microstructure/texture evolution in interstitial-free steel sheets,” ISIJ Int. 41 (6), 533–541 (2001). CrossRef
22.
go back to reference J. T. Park and J. A. Szpunar, “Evolution of recrystallization texture in nonoriented electrical steels,” Acta Mater. 51 (11), 3037–3051 (2003). CrossRef J. T. Park and J. A. Szpunar, “Evolution of recrystallization texture in nonoriented electrical steels,” Acta Mater. 51 (11), 3037–3051 (2003). CrossRef
23.
go back to reference L. Kestens and S. Jacobs, “Texture control during the manufacturing of nonoriented electrical steels,” Texture, Stress Microstruct. 2008, 173083 (2008). L. Kestens and S. Jacobs, “Texture control during the manufacturing of nonoriented electrical steels,” Texture, Stress Microstruct. 2008, 173083 (2008).
24.
go back to reference J. Qiao, C. Liu, F. Guo, L. Xiang, S. Qiu, and H. Wang, “Effect of recrystallization annealing temperature on texture and magnetic properties of 2.97% Si non-oriented silicon steel,” Metall. Res. Technol. 116 (4), 412 (2019). CrossRef J. Qiao, C. Liu, F. Guo, L. Xiang, S. Qiu, and H. Wang, “Effect of recrystallization annealing temperature on texture and magnetic properties of 2.97% Si non-oriented silicon steel,” Metall. Res. Technol. 116 (4), 412 (2019). CrossRef
25.
go back to reference Operation and Maintenance Instructions, BUEHLER® ELECTROMET® 4 polisher/etcher. Operation and Maintenance Instructions, BUEHLER® ELECTROMET® 4 polisher/etcher.
26.
27.
go back to reference H. J. Bunge, Texture Analysis in Materials Science (Butterworth, London, 1982). H. J. Bunge, Texture Analysis in Materials Science (Butterworth, London, 1982).
28.
go back to reference M. F. De Campos, J. C. Teixeira, and F. J. G. Landgraf, “The optimum grain size for minimizing energy losses in iron,” J. Magn. Magn. Mater. 301 (1), 94–99 (2006). CrossRef M. F. De Campos, J. C. Teixeira, and F. J. G. Landgraf, “The optimum grain size for minimizing energy losses in iron,” J. Magn. Magn. Mater. 301 (1), 94–99 (2006). CrossRef
29.
go back to reference H. Shimanaka, Y. Ito, K. Matsumara, and B. Fukuda, “Recent development of non-oriented electrical steel sheets,” J. Magn. Magn. Mater. 26 (1–3), 57–64 (1982). CrossRef H. Shimanaka, Y. Ito, K. Matsumara, and B. Fukuda, “Recent development of non-oriented electrical steel sheets,” J. Magn. Magn. Mater. 26 (1–3), 57–64 (1982). CrossRef
30.
go back to reference N. Yoshinaga, K. Ushioda, A. Tami, and O. Akisue, “α + γ and γ phases annealing in ultra low-carbon sheet steels,” ISIJ Int. 34, 33–42 (1994). CrossRef N. Yoshinaga, K. Ushioda, A. Tami, and O. Akisue, “α + γ and γ phases annealing in ultra low-carbon sheet steels,” ISIJ Int. 34, 33–42 (1994). CrossRef
Metadata
Title
Optimization of the Final Annealing Temperature for Cold-Rolled Non-Grain Oriented (CRNO) Electrical Steel through Gleeble Simulation
Authors
A. Gowthaman
V. Pownsamy
Pranav Tripathi
D. Satish Kumar
M. Swaminathan
S. Manjini
Publication date
18-08-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 14/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X2114009X