Skip to main content
Top
Published in: Strength of Materials 2/2022

13-06-2022

Optimization of the Welding Properties of Friction Stir Weld Butt Joints Using the Response Surface Method Based on Taguchi’s Design

Authors: C. Y. Zhang, Q. D. Chen, M. D. Jean

Published in: Strength of Materials | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present study aims to optimize friction stir welding (FSW) using statistical tools, thereby improving the mechanical properties of butt welds and achieving the desired butt welds for practical applications, such as arts of traditional handicraft and metal sculpture products. The influence of friction stir welding parameters on butt welds was determined by the orthogonal array test and variance analysis. The pin length, dwell time, tool rotational speed, and traverse speed were found to be highly significant factors of the butt welds. In addition, the response surface method (RSM) was used to construct the model from the data of the orthogonal array experiment run using the significant factor application via Taguchi’s design. The experimental results showed that the mechanical properties of butt welds were enhanced by FSW, and the strength of butt welds reached 91%. Furthermore, the fractured properties showed a fine recrystallized grain with fewer defects or imperfections, thereby improving the workability. This was of great significance to the structural safety of large-scale metal sculptures and the pursuit of precision of handicraft products. Based on the tensile strength regression models of friction welding, the linear, interactive, and quadratic models were established, and the quadratic model with 3D contours of the tensile behavior was further developed. The results showed that the predicted values of RSM for butt weld tensile properties were very close to the experimental data, which proved the advisability and availability of RSM based on Taguchi’s design in improving the mechanical properties of friction stir welds.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N. T. Kiimbharand and K. Bhaniimiirthy, “Friction stir welding of A1 6061 alloy,” Asian J. Exp. Sci., 22, No. 2, 63–74 (2008). N. T. Kiimbharand and K. Bhaniimiirthy, “Friction stir welding of A1 6061 alloy,” Asian J. Exp. Sci., 22, No. 2, 63–74 (2008).
2.
go back to reference R. S. Mishra and Z. Y. Ma, “Friction stirring welding and processing,” Mater. Sci. Eng., R50, 1–78 (2005).CrossRef R. S. Mishra and Z. Y. Ma, “Friction stirring welding and processing,” Mater. Sci. Eng., R50, 1–78 (2005).CrossRef
3.
go back to reference Z. Y. Ma, “Friction stir processing technology: a review,” Metall. Mater. Trans. A, 39, 642–658 (2008).CrossRef Z. Y. Ma, “Friction stir processing technology: a review,” Metall. Mater. Trans. A, 39, 642–658 (2008).CrossRef
4.
go back to reference C. G. Rhodes, M. W. Mahoney, W. H. Bingel, et al., “Effects of friction stir welding on microstructure of 7075 aluminum,” Scripta Mater., 36, No. l, 69–75(1997).CrossRef C. G. Rhodes, M. W. Mahoney, W. H. Bingel, et al., “Effects of friction stir welding on microstructure of 7075 aluminum,” Scripta Mater., 36, No. l, 69–75(1997).CrossRef
5.
go back to reference H. Jin, S. Saimoto, M. Ball, et al., “Characterisation of microstructure and texture in friction stir welding joints of 5754 and 5182 aluminum alloy sheets,” Mater. Sci. Technol., 17, 1605–1614 (2001).CrossRef H. Jin, S. Saimoto, M. Ball, et al., “Characterisation of microstructure and texture in friction stir welding joints of 5754 and 5182 aluminum alloy sheets,” Mater. Sci. Technol., 17, 1605–1614 (2001).CrossRef
6.
go back to reference Y. S. Sato, M. Urate, H. Kokawa, et al. “Hall–Petch relationship in friction stir welds of equal channel angular-pressed aluminum alloys,” Mater. Sci. Eng. A, 354, 298–305 (2003).CrossRef Y. S. Sato, M. Urate, H. Kokawa, et al. “Hall–Petch relationship in friction stir welds of equal channel angular-pressed aluminum alloys,” Mater. Sci. Eng. A, 354, 298–305 (2003).CrossRef
7.
go back to reference W. M. Thomas, P. L. Threadgill, and E. D. Nicholas, “The feasibility of friction stir welding steel,” Sci. Technol. Weld. Joi., 4, No. 6, 365–372 (1999).CrossRef W. M. Thomas, P. L. Threadgill, and E. D. Nicholas, “The feasibility of friction stir welding steel,” Sci. Technol. Weld. Joi., 4, No. 6, 365–372 (1999).CrossRef
8.
go back to reference W. M. Thomas, E. D. Nicholas, E. R. Watts, et al., “Friction based welding technology for aluminum,” in: TWI Ltd, Granta Park, Great Abington, Cambridge, CB16AL, UK. Paper presented at 8th Int. Conf. on Aluminum Alloys, 2nd to 5th July, 2002. W. M. Thomas, E. D. Nicholas, E. R. Watts, et al., “Friction based welding technology for aluminum,” in: TWI Ltd, Granta Park, Great Abington, Cambridge, CB16AL, UK. Paper presented at 8th Int. Conf. on Aluminum Alloys, 2nd to 5th July, 2002.
9.
go back to reference Y. Li, L. E. Murr, and J. C. McClure, “Flow visualization and residual microstructures with the friction-stir welding of 2024 aluminum to 6061 aluminum,” Mater. Sci. Eng. A, 271, 213–223 (1999).CrossRef Y. Li, L. E. Murr, and J. C. McClure, “Flow visualization and residual microstructures with the friction-stir welding of 2024 aluminum to 6061 aluminum,” Mater. Sci. Eng. A, 271, 213–223 (1999).CrossRef
10.
go back to reference Y. S. Sato, F. Yamashita, Y. Sugiura, et al., “FIB-assisted TEM study of an oxide array in the root of a friction stir welded aluminium alloy,” Scripta Mater., 50, 365–369 (2004).CrossRef Y. S. Sato, F. Yamashita, Y. Sugiura, et al., “FIB-assisted TEM study of an oxide array in the root of a friction stir welded aluminium alloy,” Scripta Mater., 50, 365–369 (2004).CrossRef
11.
go back to reference T. S. Srivatsan, S. Vasudevan, and L. Park, “The tensile deformation and fracture behavior of Friction Stir Welded aluminum alloy 2024,” Mater. Sci. Eng. A, 466, Nos. 1–2, 235–245 (2007).CrossRef T. S. Srivatsan, S. Vasudevan, and L. Park, “The tensile deformation and fracture behavior of Friction Stir Welded aluminum alloy 2024,” Mater. Sci. Eng. A, 466, Nos. 1–2, 235–245 (2007).CrossRef
12.
go back to reference H. Liu, H. Fujii, M. Maeda, et al., “Tensile properties and fracture locations of friction-stir welded joints of 6061-T6 aluminum alloy,” J. Mater. Sci. Lett., 22, 1061–1063 (2003).CrossRef H. Liu, H. Fujii, M. Maeda, et al., “Tensile properties and fracture locations of friction-stir welded joints of 6061-T6 aluminum alloy,” J. Mater. Sci. Lett., 22, 1061–1063 (2003).CrossRef
13.
go back to reference G. Liu, L. E. Murr, C. S. Niou, et al., “Microstructural aspects of the friction-stir welding of 6061-T6 aluminum,” Scripta Mater., 37, 355–361 (1997).CrossRef G. Liu, L. E. Murr, C. S. Niou, et al., “Microstructural aspects of the friction-stir welding of 6061-T6 aluminum,” Scripta Mater., 37, 355–361 (1997).CrossRef
14.
go back to reference W. B. Lee and S. B. Jung, “The joint properties of copper by friction stir welding,” Mater. Lett., 58, 1041–1046 (2004).CrossRef W. B. Lee and S. B. Jung, “The joint properties of copper by friction stir welding,” Mater. Lett., 58, 1041–1046 (2004).CrossRef
15.
go back to reference K. N. Krishnan, “The effect of post weld heat treatment on the properties of 6061 friction stir welded joints,” J. Mater. Sci., 37, 473–480 (2002).CrossRef K. N. Krishnan, “The effect of post weld heat treatment on the properties of 6061 friction stir welded joints,” J. Mater. Sci., 37, 473–480 (2002).CrossRef
16.
go back to reference H. B. Chen, K. Yan, T. Lin, et al., “The investigation of typical welding defects for 5456 aluminum alloy friction stir welds,” Mater. Sci. Eng. A, 433, 64–69 (2006).CrossRef H. B. Chen, K. Yan, T. Lin, et al., “The investigation of typical welding defects for 5456 aluminum alloy friction stir welds,” Mater. Sci. Eng. A, 433, 64–69 (2006).CrossRef
17.
go back to reference K. N. Krishnan, “On the formation of onion rings in friction stir welds,” Mater. Sci. Eng. A, 327, 246–251 (2002).CrossRef K. N. Krishnan, “On the formation of onion rings in friction stir welds,” Mater. Sci. Eng. A, 327, 246–251 (2002).CrossRef
18.
go back to reference S. Lim, S. Kim, C. G. Lee, et al., “Tensile behavior of friction-stir-welded al 6061-T651,” Metall. Mater. Trans. A, 35, 2829–2835 (2004).CrossRef S. Lim, S. Kim, C. G. Lee, et al., “Tensile behavior of friction-stir-welded al 6061-T651,” Metall. Mater. Trans. A, 35, 2829–2835 (2004).CrossRef
19.
go back to reference H. Liu, M. Maeda, H. Fujii, et al., “Tensile properties and fracture locations of friction-stir welded joints of 1050-H24 aluminum alloy,” J. Mater. Sci. Lett., 22, 41–43 (2013).CrossRef H. Liu, M. Maeda, H. Fujii, et al., “Tensile properties and fracture locations of friction-stir welded joints of 1050-H24 aluminum alloy,” J. Mater. Sci. Lett., 22, 41–43 (2013).CrossRef
20.
go back to reference W. B. Lee, “Mechanical properties related to microstructural variation of 6061 Al alloy joints by friction stir welding,” Mater. Trans., 45, No. 5, 1700–1705 (2004).CrossRef W. B. Lee, “Mechanical properties related to microstructural variation of 6061 Al alloy joints by friction stir welding,” Mater. Trans., 45, No. 5, 1700–1705 (2004).CrossRef
21.
go back to reference K. Elangovan and V. Balasubramanian, “Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminum alloy,” J. Mater. Sci. Eng. A, 459, 7–18 (2007).CrossRef K. Elangovan and V. Balasubramanian, “Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminum alloy,” J. Mater. Sci. Eng. A, 459, 7–18 (2007).CrossRef
22.
go back to reference A. A. Zadpoor, J. Sinke, R. Benedictus, et al., “Mechanical properties and microstructure of friction-stir welded tailor-made blanks,” Mater. Sci. Eng. A, 494, 281–290 (2008).CrossRef A. A. Zadpoor, J. Sinke, R. Benedictus, et al., “Mechanical properties and microstructure of friction-stir welded tailor-made blanks,” Mater. Sci. Eng. A, 494, 281–290 (2008).CrossRef
23.
go back to reference P. J. Ramulu, R. Ganesh Narayanan, S. V. Kailas, et al., “Internal defect and process parameter analysis during friction-stir welding of Al 6061 sheets,” Int. J. Adv. Manuf. Tech., 65, 1515–1528 (2013).CrossRef P. J. Ramulu, R. Ganesh Narayanan, S. V. Kailas, et al., “Internal defect and process parameter analysis during friction-stir welding of Al 6061 sheets,” Int. J. Adv. Manuf. Tech., 65, 1515–1528 (2013).CrossRef
24.
go back to reference B. T. Gibson, D. H. Lammlein, T. J. Prater, et al., “Friction stir welding: process, automation, and control,” J. Manuf. Process., 16, 56–73 (2014).CrossRef B. T. Gibson, D. H. Lammlein, T. J. Prater, et al., “Friction stir welding: process, automation, and control,” J. Manuf. Process., 16, 56–73 (2014).CrossRef
25.
go back to reference B. T. Lin, M. D. Jean, and J. H. Chou, “Using response surface methodology for optimizing deposited partially stabilized zirconia in plasma spraying,” Appl. Surf. Sci., 253, 3254–3262 (2007).CrossRef B. T. Lin, M. D. Jean, and J. H. Chou, “Using response surface methodology for optimizing deposited partially stabilized zirconia in plasma spraying,” Appl. Surf. Sci., 253, 3254–3262 (2007).CrossRef
26.
go back to reference D. C. Montgomery, “Using fractional factorial designs for Robust Design process development,” Qual. Eng., 3, No. 2, 193–205 (1990).CrossRef D. C. Montgomery, “Using fractional factorial designs for Robust Design process development,” Qual. Eng., 3, No. 2, 193–205 (1990).CrossRef
27.
go back to reference T. H. Chien, M. D. Jean, M. H. Lu, et al. “Application of response surface methodology for robustness of responses of yttria stabilized zirconia coatings,” J. Chinese Inst. Ind. Eng., 272, No. 2, 90–102 (2010). T. H. Chien, M. D. Jean, M. H. Lu, et al. “Application of response surface methodology for robustness of responses of yttria stabilized zirconia coatings,” J. Chinese Inst. Ind. Eng., 272, No. 2, 90–102 (2010).
28.
go back to reference R. H. Myers, and D. C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John-Wiley & Sons, New York (2006). R. H. Myers, and D. C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John-Wiley & Sons, New York (2006).
29.
go back to reference S. Rajakumar, and V. Balasubramanian, “Establishing relationship between mechanical properties of aluminium alloys and optimized friction stir welding process parameters,” Mater. Design, 40, 17–35 (2012).CrossRef S. Rajakumar, and V. Balasubramanian, “Establishing relationship between mechanical properties of aluminium alloys and optimized friction stir welding process parameters,” Mater. Design, 40, 17–35 (2012).CrossRef
30.
go back to reference N. Kamp, A. P. Reynolds, and J. D. Robson, “Modelling of 7050 aluminium alloy friction stir welding,” Sci. Technol. Weld. Joi., 14, No. 7, 589–596 (2009).CrossRef N. Kamp, A. P. Reynolds, and J. D. Robson, “Modelling of 7050 aluminium alloy friction stir welding,” Sci. Technol. Weld. Joi., 14, No. 7, 589–596 (2009).CrossRef
31.
go back to reference S. Rajakumar, C. Muralidharan, and V. Balasubramanian, “Predicting tensile strength, hardness and corrosion rate of friction stir welded AA6061-T6 aluminium alloy joints,” Mater. Design, 32, 2878–2890 (2011).CrossRef S. Rajakumar, C. Muralidharan, and V. Balasubramanian, “Predicting tensile strength, hardness and corrosion rate of friction stir welded AA6061-T6 aluminium alloy joints,” Mater. Design, 32, 2878–2890 (2011).CrossRef
32.
go back to reference Y. Bozkurt and M. K. Bilici, “Application of Taguchi approach to optimize of FSSW parameters on joint properties of dissimilar AA2024-T3 and AA5754-H22 aluminum alloys,” Mater. Design, 51, 513–521 (2013).CrossRef Y. Bozkurt and M. K. Bilici, “Application of Taguchi approach to optimize of FSSW parameters on joint properties of dissimilar AA2024-T3 and AA5754-H22 aluminum alloys,” Mater. Design, 51, 513–521 (2013).CrossRef
33.
go back to reference S. Rajakumar and V. Balasubramanian, “Establishing relationship between mechanical properties of aluminium alloys and optimized friction stir welding process parameters,” Mater. Design, 40, 17–35 (2012).CrossRef S. Rajakumar and V. Balasubramanian, “Establishing relationship between mechanical properties of aluminium alloys and optimized friction stir welding process parameters,” Mater. Design, 40, 17–35 (2012).CrossRef
34.
go back to reference N. P. Patel, P. Parlikar, R. S. Dhari, et al., “Numerical modelling on cooling assisted friction stir welding of dissimilar Al-Cu joint,” J. Manuf. Process., 47, 98–109 (2019).CrossRef N. P. Patel, P. Parlikar, R. S. Dhari, et al., “Numerical modelling on cooling assisted friction stir welding of dissimilar Al-Cu joint,” J. Manuf. Process., 47, 98–109 (2019).CrossRef
35.
go back to reference M. Grujicic, G. Arakere, C. F. Yen, et al., “Computational investigation of hardness evolution during friction stir welding of AA5083 and AA2139 aluminum alloys,” J. Mater. Eng. Perform., 20, No. 7, 1097–1108 (2011).CrossRef M. Grujicic, G. Arakere, C. F. Yen, et al., “Computational investigation of hardness evolution during friction stir welding of AA5083 and AA2139 aluminum alloys,” J. Mater. Eng. Perform., 20, No. 7, 1097–1108 (2011).CrossRef
36.
go back to reference A. R. Raja, M. Vashista, and M. Z. K. Yusufzai, “Estimation of material properties using hysteresis loop analysis in friction stir welded steel plate,” J. Alloy. Compd., 814, No. 25, 152–265 (2020). A. R. Raja, M. Vashista, and M. Z. K. Yusufzai, “Estimation of material properties using hysteresis loop analysis in friction stir welded steel plate,” J. Alloy. Compd., 814, No. 25, 152–265 (2020).
37.
go back to reference H. J. Zhang, H. J. Liu, J. L. Song, et al., “Micro-characteristic and formation mechanism of layered band structure in non-weld-thinning friction stir welded 7N01 aluminum alloy,” J. Manuf. Process., 50, 154–160 (2020).CrossRef H. J. Zhang, H. J. Liu, J. L. Song, et al., “Micro-characteristic and formation mechanism of layered band structure in non-weld-thinning friction stir welded 7N01 aluminum alloy,” J. Manuf. Process., 50, 154–160 (2020).CrossRef
38.
go back to reference D. Sunilkumar, S. Muthukumaran, M. Vasudevan, et al., “Tool rotational speed variant response on the evolution of microstructure and its significance on mechanical properties of friction stir welded 9Cr-1Mo steel,” J. Mater. Process. Tech., 278, 116536 (2020).CrossRef D. Sunilkumar, S. Muthukumaran, M. Vasudevan, et al., “Tool rotational speed variant response on the evolution of microstructure and its significance on mechanical properties of friction stir welded 9Cr-1Mo steel,” J. Mater. Process. Tech., 278, 116536 (2020).CrossRef
39.
go back to reference A. M. Sadoun, A. Wagih, A. Fathy, et al., “Effect of tool pin side area ratio on temperature distribution in friction stir welding,” Results Phys., 15, 102814 (2019).CrossRef A. M. Sadoun, A. Wagih, A. Fathy, et al., “Effect of tool pin side area ratio on temperature distribution in friction stir welding,” Results Phys., 15, 102814 (2019).CrossRef
Metadata
Title
Optimization of the Welding Properties of Friction Stir Weld Butt Joints Using the Response Surface Method Based on Taguchi’s Design
Authors
C. Y. Zhang
Q. D. Chen
M. D. Jean
Publication date
13-06-2022
Publisher
Springer US
Published in
Strength of Materials / Issue 2/2022
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-022-00400-8

Other articles of this Issue 2/2022

Strength of Materials 2/2022 Go to the issue

Premium Partners