Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

01-07-2019 | Issue 4/2019

Automatic Control and Computer Sciences 4/2019

Optimization of URL-Based Phishing Websites Detection through Genetic Algorithms

Journal:
Automatic Control and Computer Sciences > Issue 4/2019
Authors:
Muhammad Taseer Suleman, Shahid Mahmood Awan

Abstract

Website phishing is an online crime for obtaining secret information such as passwords, account numbers, and credit card details. Attackers lure users through attractive hyperlinks, in order to, redirect to the fake websites. Phishing detection through a machine-learning approach has become quite effective nowadays. In this research, the Uniform Resource Locator (URL) based phishing detection approach has been used. Machine-learning classifiers like Naïve Bayes, Iterative Dichotomiser-3 (ID3), K-Nearest Neighbor (KNN), Decision Tree and Random Forest used for the classification of legitimate and illegitimate websites. This classification would help in the detection of phishing websites. However, it has been observed that use of Genetic Algorithms (GAs) for feature selection can improve the detection accuracy. Our experimental results portrayed the use of Iterative Dichotomiser-3 (ID3) along with Yet Another Generating Genetic Algorithm (YAGGA) improves the detection accuracy up to 95%.

Please log in to get access to this content

Literature
About this article

Other articles of this Issue 4/2019

Automatic Control and Computer Sciences 4/2019 Go to the issue