Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Cognitive Neurodynamics 1/2023

28-05-2022 | Research Article

Optimized adaptive neuro-fuzzy inference system based on hybrid grey wolf-bat algorithm for schizophrenia recognition from EEG signals

Authors: Kishore Balasubramanian, K. Ramya, K. Gayathri Devi

Published in: Cognitive Neurodynamics | Issue 1/2023

Login to get access
share
SHARE

Abstract

Schizophrenia is a chronic mental disorder that impairs a person’s thinking capacity, feelings and emotions, behavioural traits, etc., Emotional distortions, delusions, hallucinations, and incoherent speech are all some of the symptoms of schizophrenia, and cause disruption of routine activities. Computer-assisted diagnosis of schizophrenia is significantly needed to give its patients a higher quality of life. Hence, an improved adaptive neuro-fuzzy inference system based on the Hybrid Grey Wolf-Bat Algorithm for accurate prediction of schizophrenia from multi-channel EEG signals is presented in this study. The EEG signals are pre-processed using a Butterworth band pass filter and wICA initially, from which statistical, time-domain, frequency-domain, and spectral features are extracted. Discriminating features are selected using the ReliefF algorithm and are then forwarded to ANFIS for classification into either schizophrenic or normal. ANFIS is optimized by the Hybrid Grey Wolf-Bat Algorithm (HWBO) for better efficiency. The method is experimented on two separate EEG datasets-1 and 2, demonstrating an accuracy of 99.54% and 99.35%, respectively, with appreciable F1-score and MCC. Further experiments reveal the efficiency of the Hybrid Wolf-Bat algorithm in optimizing the ANFIS parameters when compared with traditional ANFIS model and other proven algorithms like genetic algorithm-ANFIS, particle optimization-ANFIS, crow search optimization algorithm-ANFIS and ant colony optimization algorithm-ANFIS, showing high R2 value and low RSME value. To provide a bias free classification, tenfold cross validation is performed which produced an accuracy of 97.8% and 98.5% on the two datasets respectively. Experimental outcomes demonstrate the superiority of the Hybrid Grey Wolf-Bat Algorithm over the similar techniques in predicting schizophrenia.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
go back to reference Aghelpour P, Bahrami-Pichaghchi H, Kisi Ö (2020) Comparison of three different bio-inspired algorithms to improve ability of neuro fuzzy approach in prediction of agricultural drought, based on three different indexes. Comput Electron Agric 170:105279 CrossRef Aghelpour P, Bahrami-Pichaghchi H, Kisi Ö (2020) Comparison of three different bio-inspired algorithms to improve ability of neuro fuzzy approach in prediction of agricultural drought, based on three different indexes. Comput Electron Agric 170:105279 CrossRef
go back to reference Alimardani F, Cho J, Boostani R, Hwang H (2018) Classification of bipolar disorder and schizophrenia using steady-state visual evoked potential based features. IEEE Access 6:40379–40388 CrossRef Alimardani F, Cho J, Boostani R, Hwang H (2018) Classification of bipolar disorder and schizophrenia using steady-state visual evoked potential based features. IEEE Access 6:40379–40388 CrossRef
go back to reference Balasubramanian K, Ananthamoorthy NP (2021) Improved adaptive neuro-fuzzy inference system based on modified glowworm swarm and differential evolution optimization algorithm for medical diagnosis. Neural Comput Appl 33:7649–7660 CrossRef Balasubramanian K, Ananthamoorthy NP (2021) Improved adaptive neuro-fuzzy inference system based on modified glowworm swarm and differential evolution optimization algorithm for medical diagnosis. Neural Comput Appl 33:7649–7660 CrossRef
go back to reference Bell MD, Lysaker PH, Milstein RM, Beam GJ, L, (1994) Concurrent validity of the cognitive component of schizophrenia: relationship of PANSS scores to neuro-psychological assessments. Psychiatry Res 54(1):51–58 CrossRef Bell MD, Lysaker PH, Milstein RM, Beam GJ, L, (1994) Concurrent validity of the cognitive component of schizophrenia: relationship of PANSS scores to neuro-psychological assessments. Psychiatry Res 54(1):51–58 CrossRef
go back to reference Boostani R, Sadatnezhad K, Sabeti M (2009) An efficient classifier to diagnose of schizophrenia based on the eeg signals. Expert Syst Appl 36(3):6492–6499 CrossRef Boostani R, Sadatnezhad K, Sabeti M (2009) An efficient classifier to diagnose of schizophrenia based on the eeg signals. Expert Syst Appl 36(3):6492–6499 CrossRef
go back to reference Buettner R, Beil D, Scholtz S, Djemai A (2020) Development of a machine learning based algorithm to accurately detect schizophrenia based on one-minute EEG recordings. In: Proceedings of the 53rd Hawaii International Conference on System Sciences, Wailea, HI, USA Buettner R, Beil D, Scholtz S, Djemai A (2020) Development of a machine learning based algorithm to accurately detect schizophrenia based on one-minute EEG recordings. In: Proceedings of the 53rd Hawaii International Conference on System Sciences, Wailea, HI, USA
go back to reference Castellanos NP, Makarov VA (2006) Recovering EEG brain signals: artifact suppression with wavelet enhanced independent component analysis. J Neurosci Methods 158:300–312 CrossRef Castellanos NP, Makarov VA (2006) Recovering EEG brain signals: artifact suppression with wavelet enhanced independent component analysis. J Neurosci Methods 158:300–312 CrossRef
go back to reference Chu L, Qiu RC, Liu H, Ling Z, Shi X (2017) Individual recognition in schizophrenia using deep learning methods with random forest and voting classifiers: insights from resting state EEG streams. ArXiv, abs/1707.03467. Chu L, Qiu RC, Liu H, Ling Z, Shi X (2017) Individual recognition in schizophrenia using deep learning methods with random forest and voting classifiers: insights from resting state EEG streams. ArXiv, abs/1707.03467.
go back to reference Cicalese PA, Li R, Ahmadi MB et al (2020) An EEG-fNIRS hybridization technique in the four-class classification of Alzheimer’s disease. J Neurosci Methods 336:108618 CrossRef Cicalese PA, Li R, Ahmadi MB et al (2020) An EEG-fNIRS hybridization technique in the four-class classification of Alzheimer’s disease. J Neurosci Methods 336:108618 CrossRef
go back to reference Clementz BA, Sweeney JA, Hamm JP, Ivleva EI, Ethridge LE, Pearlson GD, Keshavan MS, Tamminga CA (2016) Identification of distinct psychosis biotypes using brain-based biomarkers. Am J Psychiatry 173(4):373–384 CrossRef Clementz BA, Sweeney JA, Hamm JP, Ivleva EI, Ethridge LE, Pearlson GD, Keshavan MS, Tamminga CA (2016) Identification of distinct psychosis biotypes using brain-based biomarkers. Am J Psychiatry 173(4):373–384 CrossRef
go back to reference Elbaz K, Shen S, Zhou A, Yuan D, Xu Y (2019) Optimization of EPB shield performance with adaptive neuro-fuzzy inference system and genetic algorithm. Appl Sci 9(4):780 CrossRef Elbaz K, Shen S, Zhou A, Yuan D, Xu Y (2019) Optimization of EPB shield performance with adaptive neuro-fuzzy inference system and genetic algorithm. Appl Sci 9(4):780 CrossRef
go back to reference El-Hasnony IM, Barakat SI, Mostafa RR (2020) Optimized ANFIS model using hybrid metaheuristic algorithms for parkinson’s disease prediction in iot environment. IEEE Access 8:119252–119270 CrossRef El-Hasnony IM, Barakat SI, Mostafa RR (2020) Optimized ANFIS model using hybrid metaheuristic algorithms for parkinson’s disease prediction in iot environment. IEEE Access 8:119252–119270 CrossRef
go back to reference Ewees AA, Aziz MA (2020) Improved adaptive neuro-fuzzy inference system using gray wolf optimization: a case study in predicting biochar yield. J Intell Syst 29:924–940 Ewees AA, Aziz MA (2020) Improved adaptive neuro-fuzzy inference system using gray wolf optimization: a case study in predicting biochar yield. J Intell Syst 29:924–940
go back to reference GBD (2017) Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet; 2018 https://​doi.​org/​10.​1016/​S0140-6736(18)32279-7 GBD (2017) Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet; 2018 https://​doi.​org/​10.​1016/​S0140-6736(18)32279-7
go back to reference Jang JR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685 CrossRef Jang JR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685 CrossRef
go back to reference Kannathal N, Acharya UR, Lim CM, Sadasivan PK (2005) Characterization of EEG - a comparative study. Comput Methods Progr Biomed 80(1):17–23 CrossRef Kannathal N, Acharya UR, Lim CM, Sadasivan PK (2005) Characterization of EEG - a comparative study. Comput Methods Progr Biomed 80(1):17–23 CrossRef
go back to reference Lee Y, Zhu Y, Xu Y, Shen M, Zhang H, Thakor NV (2001) Detection of non-linearity in the EEG of schizophrenic patients. Clin Neurophysiol 112:1288–1294 CrossRef Lee Y, Zhu Y, Xu Y, Shen M, Zhang H, Thakor NV (2001) Detection of non-linearity in the EEG of schizophrenic patients. Clin Neurophysiol 112:1288–1294 CrossRef
go back to reference Liu G, Li Y, Zhang W, Zhang L (2020) A brief review of artificial intelligence applications and algorithms for psychiatric disorders. Engineering 6:462–467 CrossRef Liu G, Li Y, Zhang W, Zhang L (2020) A brief review of artificial intelligence applications and algorithms for psychiatric disorders. Engineering 6:462–467 CrossRef
go back to reference Maroufpoor S, Maroufpoor E, Bozorg-Haddad O, Shiri J, MundherYaseen Z (2019) Soil moisture simulation using hybrid artificial intelligent model: hybridization of adaptive neuro fuzzy inference system with grey wolf optimizer algorithm. J Hydrol 575:544–556 CrossRef Maroufpoor S, Maroufpoor E, Bozorg-Haddad O, Shiri J, MundherYaseen Z (2019) Soil moisture simulation using hybrid artificial intelligent model: hybridization of adaptive neuro fuzzy inference system with grey wolf optimizer algorithm. J Hydrol 575:544–556 CrossRef
go back to reference Mirjalili SM, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61 CrossRef Mirjalili SM, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61 CrossRef
go back to reference Oh SL, Hagiwara Y, Raghavendra U et al (2020) A deep learning approach for parkinson’s disease diagnosis from EEG signals. Neural Comput Appl 32(15):10927–10933 CrossRef Oh SL, Hagiwara Y, Raghavendra U et al (2020) A deep learning approach for parkinson’s disease diagnosis from EEG signals. Neural Comput Appl 32(15):10927–10933 CrossRef
go back to reference Oh SL, Vicnesh J, Ciaccio EJ, Yuvaraj R, Acharya UR (2019) Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals. Appl Sci 9:2870 CrossRef Oh SL, Vicnesh J, Ciaccio EJ, Yuvaraj R, Acharya UR (2019) Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals. Appl Sci 9:2870 CrossRef
go back to reference Olejarczyk E, Jernajczyk W (2017) Graph-based analysis of brain connectivity in schizophrenia. PLoS ONE 12:e0188629 CrossRef Olejarczyk E, Jernajczyk W (2017) Graph-based analysis of brain connectivity in schizophrenia. PLoS ONE 12:e0188629 CrossRef
go back to reference Penghui L, Ewees AA, Beyaztas BH, Qi C, Salih SQ, Al-Ansari N, Bhagat SK, Yaseen ZM, Singh VP (2020) Metaheuristic optimization algorithms hybridized with artificial intelligence model for soil temperature prediction: novel model. IEEE Access 8:51884–51904 CrossRef Penghui L, Ewees AA, Beyaztas BH, Qi C, Salih SQ, Al-Ansari N, Bhagat SK, Yaseen ZM, Singh VP (2020) Metaheuristic optimization algorithms hybridized with artificial intelligence model for soil temperature prediction: novel model. IEEE Access 8:51884–51904 CrossRef
go back to reference Sabeti M, Katebi S, Boostani R (2009) Entropy and complexity measures for EEG signal classification of schizophrenic and control participants. Artif Intell Med 47(3):263–274 CrossRef Sabeti M, Katebi S, Boostani R (2009) Entropy and complexity measures for EEG signal classification of schizophrenic and control participants. Artif Intell Med 47(3):263–274 CrossRef
go back to reference Srinivasagopalan S, Barry J, Gurupur VP, Thankachan SV (2019) A deep learning approach for diagnosing schizophrenic patients. J Exp Theor Artif Intell 31:803–816 CrossRef Srinivasagopalan S, Barry J, Gurupur VP, Thankachan SV (2019) A deep learning approach for diagnosing schizophrenic patients. J Exp Theor Artif Intell 31:803–816 CrossRef
go back to reference Subha DP, Joseph PK, Acharya UR, Lim CM (2008) EEG signal analysis: a survey. J Med Syst 34:195–212 CrossRef Subha DP, Joseph PK, Acharya UR, Lim CM (2008) EEG signal analysis: a survey. J Med Syst 34:195–212 CrossRef
go back to reference Upadhyay R, Padhy PK, Kankar PK (2016) EEG artifact removal and noise suppression by discrete orthonormal S-transform denoising. Comput Electr Eng 53:125–142 CrossRef Upadhyay R, Padhy PK, Kankar PK (2016) EEG artifact removal and noise suppression by discrete orthonormal S-transform denoising. Comput Electr Eng 53:125–142 CrossRef
go back to reference Vecchiato G, Astolfi L, Fallani FD, Toppi J, Aloise F, Bez F, Wei D, Kong W, Dai G, Cincotti F, Mattia D, Babiloni F (2011) On the use of EEG or MEG brain imaging tools in neuromarketing research. Comput Intell Neurosci 2011:1–12 CrossRef Vecchiato G, Astolfi L, Fallani FD, Toppi J, Aloise F, Bez F, Wei D, Kong W, Dai G, Cincotti F, Mattia D, Babiloni F (2011) On the use of EEG or MEG brain imaging tools in neuromarketing research. Comput Intell Neurosci 2011:1–12 CrossRef
go back to reference Veronese E, Castellani U, Peruzzo D, Bellani M, Brambilla P (2013) Machine learning approaches: from theory to application in schizophrenia. Comput Math Methods Med 2013:1–12 CrossRef Veronese E, Castellani U, Peruzzo D, Bellani M, Brambilla P (2013) Machine learning approaches: from theory to application in schizophrenia. Comput Math Methods Med 2013:1–12 CrossRef
go back to reference Yan W, Plis S, Calhoun VD, Liu S, Jiang R, Jiang T, Sui J (2017) Discriminating schizophrenia from normal controls using resting state functional network connectivity: a deep neural network and layer-wise relevance propagation method. In: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), pp 1–6 Yan W, Plis S, Calhoun VD, Liu S, Jiang R, Jiang T, Sui J (2017) Discriminating schizophrenia from normal controls using resting state functional network connectivity: a deep neural network and layer-wise relevance propagation method. In: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), pp 1–6
go back to reference Zeng L, Wang H, Hu P, Yang B, Pu W, Shen H, Chen X, Liu Z, Yin H, Tan Q, Wang K, Hu D (2018) Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI. EBioMedicine 30:74–85 CrossRef Zeng L, Wang H, Hu P, Yang B, Pu W, Shen H, Chen X, Liu Z, Yin H, Tan Q, Wang K, Hu D (2018) Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI. EBioMedicine 30:74–85 CrossRef
go back to reference Zhao Q, Hu B, Liu L (2012) An EEG based nonlinearity analysis method for schizophrenia diagnosis. Biomed Eng 9:136 Zhao Q, Hu B, Liu L (2012) An EEG based nonlinearity analysis method for schizophrenia diagnosis. Biomed Eng 9:136
Metadata
Title
Optimized adaptive neuro-fuzzy inference system based on hybrid grey wolf-bat algorithm for schizophrenia recognition from EEG signals
Authors
Kishore Balasubramanian
K. Ramya
K. Gayathri Devi
Publication date
28-05-2022
Publisher
Springer Netherlands
Published in
Cognitive Neurodynamics / Issue 1/2023
Print ISSN: 1871-4080
Electronic ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-022-09817-y

Other articles of this Issue 1/2023

Cognitive Neurodynamics 1/2023 Go to the issue