Skip to main content
Top
Published in: Journal of Nanoparticle Research 8/2016

01-08-2016 | Research Paper

Optimized method of dispersion of titanium dioxide nanoparticles for evaluation of safety aspects in cosmetics

Authors: Karina Penedo Carvalho, Nathalia Balthazar Martins, Ana Rosa Lopes Pereira Ribeiro, Taliria Silva Lopes, Rodrigo Caciano de Sena, Pascal Sommer, José Mauro Granjeiro

Published in: Journal of Nanoparticle Research | Issue 8/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanoparticles agglomerate when in contact with biological solutions, depending on the solutions’ nature. The agglomeration state will directly influence cellular response, since free nanoparticles are prone to interact with cells and get absorbed into them. In sunscreens, titanium dioxide nanoparticles (TiO2-NPs) form mainly aggregates between 30 and 150 nm. Until now, no toxicological study with skin cells has reached this range of size distribution. Therefore, in order to reliably evaluate their safety, it is essential to prepare suspensions with reproducibility, irrespective of the biological solution used, representing the above particle size distribution range of NPs (30–150 nm) found on sunscreens. Thus, the aim of this study was to develop a unique protocol of TiO2 dispersion, combining these features after dilution in different skin cell culture media, for in vitro tests. This new protocol was based on physicochemical characteristics of TiO2, which led to the choice of the optimal pH condition for ultrasonication. The next step consisted of stabilization of protein capping with acidified bovine serum albumin, followed by an adjustment of pH to 7.0. At each step, the solutions were analyzed by dynamic light scattering and transmission electron microscopy. The final concentration of NPs was determined by inductively coupled plasma-optical emission spectroscopy. Finally, when diluted in dulbecco’s modified eagle medium, melanocytes growth medium, or keratinocytes growth medium, TiO2–NPs displayed a highly reproducible size distribution, within the desired size range and without significant differences among the media. Together, these results demonstrate the consistency achieved by this new methodology and its suitability for in vitro tests involving skin cell cultures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference 22412:2008 I (2008) Particle size analysis—Dynamic light scattering (DLS) 22412:2008 I (2008) Particle size analysis—Dynamic light scattering (DLS)
go back to reference Brun E et al (2014) Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia. Part fibre toxicol 11:13CrossRef Brun E et al (2014) Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia. Part fibre toxicol 11:13CrossRef
go back to reference Butler MK, Prow TW, Guo YN, Lin LL, Webb RI, Martin DJ (2012) High-pressure freezing/freeze substitution and transmission electron microscopy for characterization of metal oxide nanoparticles within sunscreens. Nanomedicine (Lond) 7:541–551. doi:10.2217/nnm.11.149 CrossRef Butler MK, Prow TW, Guo YN, Lin LL, Webb RI, Martin DJ (2012) High-pressure freezing/freeze substitution and transmission electron microscopy for characterization of metal oxide nanoparticles within sunscreens. Nanomedicine (Lond) 7:541–551. doi:10.​2217/​nnm.​11.​149 CrossRef
go back to reference Carrière M, Pigeot-Rémy S, Casanova A, Dhawan A, Lazzaroni J-C, Guillard C, Herlin-Boime N (2014) Impact of Titanium dioxide nanoparticle dispersion state and dispersion method on their toxicity towards a549 lung cells and escherichia coli bacteria. J Transl Toxicol 1:10–20 Carrière M, Pigeot-Rémy S, Casanova A, Dhawan A, Lazzaroni J-C, Guillard C, Herlin-Boime N (2014) Impact of Titanium dioxide nanoparticle dispersion state and dispersion method on their toxicity towards a549 lung cells and escherichia coli bacteria. J Transl Toxicol 1:10–20
go back to reference Halász G, Gyüre B, Jánosi IM, Szabó KG, Tél T (2007) Vortex flow generated by a magnetic stirrer. Am J Phys 75:1092–1098CrossRef Halász G, Gyüre B, Jánosi IM, Szabó KG, Tél T (2007) Vortex flow generated by a magnetic stirrer. Am J Phys 75:1092–1098CrossRef
go back to reference Hunter RJ (1981) Zeta potential in colloid science: principles and applications. Colloid Science. Academic Press Inc., London Hunter RJ (1981) Zeta potential in colloid science: principles and applications. Colloid Science. Academic Press Inc., London
go back to reference Iavicoli I, Leso V, Fontana L, Bergamaschi A (2011) Toxicological effects of titanium dioxide nanoparticles: a review of in vitro mammalian studies. Eur Rev Med Pharmacol Sci 15:481–508 Iavicoli I, Leso V, Fontana L, Bergamaschi A (2011) Toxicological effects of titanium dioxide nanoparticles: a review of in vitro mammalian studies. Eur Rev Med Pharmacol Sci 15:481–508
go back to reference ISO 14887 (2000) Sample preparation—dispersing procedures for powders in liquids ISO 14887 (2000) Sample preparation—dispersing procedures for powders in liquids
go back to reference Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89CrossRef Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89CrossRef
go back to reference Kermanizadeh A et al (2013) An in vitro assessment of panel of engineered nanomaterials using a human renal cell line: cytotoxicity, pro-inflammatory response, oxidative stress and genotoxicity. BMC Nephrol 14:96. doi:10.1186/1471-2369-14-96 CrossRef Kermanizadeh A et al (2013) An in vitro assessment of panel of engineered nanomaterials using a human renal cell line: cytotoxicity, pro-inflammatory response, oxidative stress and genotoxicity. BMC Nephrol 14:96. doi:10.​1186/​1471-2369-14-96 CrossRef
go back to reference Kosmulski M (2002) The significance of the difference in the point of zero charge between rutile and anatase. Adv Colloid Interface Sci 99:255–264CrossRef Kosmulski M (2002) The significance of the difference in the point of zero charge between rutile and anatase. Adv Colloid Interface Sci 99:255–264CrossRef
go back to reference Mavon A, Miquel C, Lejeune O, Payre B, Moretto P (2007) In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and a mineral sunscreen. Skin Pharmacol Physiol 20:10–20. doi:10.1159/000096167 CrossRef Mavon A, Miquel C, Lejeune O, Payre B, Moretto P (2007) In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and a mineral sunscreen. Skin Pharmacol Physiol 20:10–20. doi:10.​1159/​000096167 CrossRef
go back to reference Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253. doi:10.1093/toxsci/kfm240 CrossRef Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253. doi:10.​1093/​toxsci/​kfm240 CrossRef
go back to reference Othman SH, Abdul Rashid S, Mohd Ghazi TI, Abdullah N (2012) Dispersion and stabilization of photocatalytic TiO2 nanoparticles in aqueous suspension for coatings applications. J Nanomater 2012:10. doi:10.1155/2012/718214 CrossRef Othman SH, Abdul Rashid S, Mohd Ghazi TI, Abdullah N (2012) Dispersion and stabilization of photocatalytic TiO2 nanoparticles in aqueous suspension for coatings applications. J Nanomater 2012:10. doi:10.​1155/​2012/​718214 CrossRef
go back to reference Prasad RY et al (2013) Effect of treatment media on the agglomeration of titanium dioxide nanoparticles: impact on genotoxicity, cellular interaction, and cell cycle. ACS Nano 7:1929–1942. doi:10.1021/nn302280n CrossRef Prasad RY et al (2013) Effect of treatment media on the agglomeration of titanium dioxide nanoparticles: impact on genotoxicity, cellular interaction, and cell cycle. ACS Nano 7:1929–1942. doi:10.​1021/​nn302280n CrossRef
go back to reference Roco MC (1999) Nanoparticles and nanotechnology research. J Nanopart Res 1:1–6CrossRef Roco MC (1999) Nanoparticles and nanotechnology research. J Nanopart Res 1:1–6CrossRef
go back to reference Schilling K et al (2010) Human safety review of “nano” Titanium dioxide and Zinc oxide. Photochem Photobiol Sci 9:495–509. doi:10.1039/b9 CrossRef Schilling K et al (2010) Human safety review of “nano” Titanium dioxide and Zinc oxide. Photochem Photobiol Sci 9:495–509. doi:10.​1039/​b9 CrossRef
go back to reference Schulz J et al (2002) Distribution of sunscreens on skin. Adv Drug Deliv Rev 54(Suppl 1):S157–S163CrossRef Schulz J et al (2002) Distribution of sunscreens on skin. Adv Drug Deliv Rev 54(Suppl 1):S157–S163CrossRef
go back to reference Suttiponparnit K, Jiang J, Sahu M, Suvachittanont S, Charinpanitkul T, Biswas P (2011) Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res Lett 6:1–8 Suttiponparnit K, Jiang J, Sahu M, Suvachittanont S, Charinpanitkul T, Biswas P (2011) Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res Lett 6:1–8
go back to reference Taurozzi JS, Hackley VA, Wiesner MR (2012) Preparation of nanoparticle dispersions from powdered material using Ultrasonic Disruption NanoEHS Protocols. NIST Spec Publ 1200:2 Taurozzi JS, Hackley VA, Wiesner MR (2012) Preparation of nanoparticle dispersions from powdered material using Ultrasonic Disruption NanoEHS Protocols. NIST Spec Publ 1200:2
go back to reference Taurozzi J, Hackley V, Wiesner M (2013a) Preparation of nanoparticle dispersions from powdered material using ultrasonic disruption Taurozzi J, Hackley V, Wiesner M (2013a) Preparation of nanoparticle dispersions from powdered material using ultrasonic disruption
go back to reference Taurozzi JS, Hackley VA, Wiesner MR (2013b) A standardised approach for the dispersion of titanium dioxide nanoparticles in biological media Nanotoxicology 7:389–401 Taurozzi JS, Hackley VA, Wiesner MR (2013b) A standardised approach for the dispersion of titanium dioxide nanoparticles in biological media Nanotoxicology 7:389–401
go back to reference Widegren J, Bergstrom L (2002) Electrostatic stabilization of ultrafine titania in ethanol. J Am Ceram Soc 85:523–528CrossRef Widegren J, Bergstrom L (2002) Electrostatic stabilization of ultrafine titania in ethanol. J Am Ceram Soc 85:523–528CrossRef
go back to reference Wu W et al (2014) Dispersion method for safety research on manufactured nanomaterials. Ind Health 52:54–65CrossRef Wu W et al (2014) Dispersion method for safety research on manufactured nanomaterials. Ind Health 52:54–65CrossRef
go back to reference Xiong S, George S, Yu H, Damoiseaux R, France B, Ng KW, Loo JS (2013) Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO(2)) nanoparticles. Arch Toxicol 87:1075–1086. doi:10.1007/s00204-012-0938-8 CrossRef Xiong S, George S, Yu H, Damoiseaux R, France B, Ng KW, Loo JS (2013) Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO(2)) nanoparticles. Arch Toxicol 87:1075–1086. doi:10.​1007/​s00204-012-0938-8 CrossRef
go back to reference Zhang X, Yin L, Tang M, Pu Y (2010) Optimized method for preparation of TiO2 nanoparticles dispersion for biological study. J Nanosci Nanotechnol 10:5213–5219CrossRef Zhang X, Yin L, Tang M, Pu Y (2010) Optimized method for preparation of TiO2 nanoparticles dispersion for biological study. J Nanosci Nanotechnol 10:5213–5219CrossRef
Metadata
Title
Optimized method of dispersion of titanium dioxide nanoparticles for evaluation of safety aspects in cosmetics
Authors
Karina Penedo Carvalho
Nathalia Balthazar Martins
Ana Rosa Lopes Pereira Ribeiro
Taliria Silva Lopes
Rodrigo Caciano de Sena
Pascal Sommer
José Mauro Granjeiro
Publication date
01-08-2016
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 8/2016
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-016-3542-7

Other articles of this Issue 8/2016

Journal of Nanoparticle Research 8/2016 Go to the issue

Premium Partners