Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

06-02-2019 | Full Research Article | Issue 3/2019

Progress in Additive Manufacturing 3/2019

Optimizing additive manufacturing parameters for the fused deposition modeling technology using a design of experiments

Journal:
Progress in Additive Manufacturing > Issue 3/2019
Authors:
Luiz Fernando C. S. Durão, Richard Barkoczy, Eduardo Zancul, Linda Lee Ho, Renan Bonnard
Important notes

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s40964-019-00075-9) contains supplementary material, which is available to authorized users.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Additive manufacturing (AM) technologies allow the manufacturing of parts directly from 3D models. These technologies, initially focused on rapid prototyping applications, have been increasingly considered for the production of final functional parts with high value added. The strengths and advantages of current AM processes include support for improved geometry for complex parts, reduction in tooling costs, material savings, and reduction in design to manufacturing lead-times. Along with those benefits, there are still production quality and performance factors, such as dimensional accuracy, strength of parts, and surface roughness, which may need to be improved depending on the product requirements. Therefore, there is a demand to increase the understanding of how AM production factors influence the final part parameters. This paper focuses on the investigation and optimization of material consumption, manufacturing time and dimensional accuracy (including linear error and surface flatness), for fused deposition modeling (FDM) technology. A design of experiments (DOE) is planned, executed and analyzed. Results indicate that print speed and the number of contours are the most important factors for the quality of the final part of the FDM process studied. Further research may consider the same approach, and the factors presented could be extended for AM technologies.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Supplementary Material
Available only for authorised users
Literature
About this article

Other articles of this Issue 3/2019

Progress in Additive Manufacturing 3/2019 Go to the issue

Premium Partners

    Image Credits