Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

16-11-2017 | Original Article | Issue 2/2018

Engineering with Computers 2/2018

Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil

Journal:
Engineering with Computers > Issue 2/2018
Authors:
Hossein Moayedi, Danial Jahed Armaghani

Abstract

The application of models provided by artificial neural network (ANN) in predicting bearing capacity of driven pile is underlined in several investigations. However, weakness of ANN in slow rate of convergence as well as finding reliable testing output is known to be the major drawbacks of implementing ANN-based techniques. The present study aims to introduce and evaluate an optimized ANN with imperialism competitive algorithm (ICA) model based to estimate bearing capacity of driven pile in cohesionless soil. The training data for optimizing the ICA-ANN structure are based on the in situ study. To develop the ICA-ANN model, the input parameters are internal friction angle of soil located in shaft (φ shaft), and tip (φ tip), pile length (L), effective vertical stress at pile toe (σ v), and pile area (A) while the output is the total driven pile bearing capacity in cohesionless soil. The predicted results are compared with a pre-developed ANN model to demonstrate the ability of the hybrid model. As a result, coefficient of determination (R 2) values of (0.885 and 0.894) and (0.964 and 0.974) was obtained for testing and training datasets of ANN and ICA-ANN models, respectively. In addition, values of variance account for (VAF) of (88.212 for training and 89.215 for testing) and (96.369 for training and 97.369 for testing, respectively) were obtained for ANN and ICA-ANN models, respectively. The obtained results declare high reliability of the developed ICA-ANN model. This model can be introduced as a new model in field of deep foundation engineering.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 2/2018

Engineering with Computers 2/2018 Go to the issue