Skip to main content
Top

2016 | OriginalPaper | Chapter

57. Optimizing Solar Hot Water Systems (Closed Systems) for Air-Conditioning Cycles in TRNSYS

Authors : A Kaabi Nejadian, Ali Mohammadi, Behnoosh Bakhtiari Heleyleh

Published in: Renewable Energy in the Service of Mankind Vol II

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Parallel and series solar hot water systems (closed systems) were simulated and optimized. The system is designed to supply the required heat for solar air-conditioning cycles such as heat generators in ejector cycle, absorption cycle generator, regenerator in liquid desiccant cycle and regenerating absorbent of the desiccant wheel, and solid desiccant cycle. A model of solar hot water system was simulated in TRNSYS and then, based on solar fraction, the components of the system were optimized. For optimization of the cycle, the dynamic performance of the system in supplying the required temperature for a cycle of Three Tons Refrigeration was analyzed under different situations. The results were compared with the experimental results to obtain consistency. The effects of the parameters of the system, supplied heat capacity, the energy used by the heater, and the effect of the environment were surveyed regarding feasibility of achieving higher solar energy. Finally, the solar hot water system was optimized for Bushehr city. The results showed that the optimization of the solar system is influenced by environmental parameters such as radiation intensity, dry bulb temperature, relative moisture; the way the system is utilized (residential and institutional); the term of operation of the system; and, most importantly, the set point of the auxiliary hot water system. The optimized system was featured as follows: solar fraction: 0.5, area of collector: 86 m2, angle of collector: 31°, set point of the auxiliary hot water system: 75°C, capacity of tank: 4 m3, solar collector discharge: 0.25 kg/s, and mass discharge rate of the thermal converter: 0.2 kg/s.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Riffat SB, Zhao X, Doherty PS (2005) Developing a theoretical model to investigate thermal performance of a thin membrane heat-pipe solar collector. Appl Therm Eng 25(5e6):899e915 Riffat SB, Zhao X, Doherty PS (2005) Developing a theoretical model to investigate thermal performance of a thin membrane heat-pipe solar collector. Appl Therm Eng 25(5e6):899e915
2.
go back to reference Bong TY, Ng KC, Bao H (1993) Thermal performance of a flat-plate heat-pipe collector array. Sol Energy 50(6):491e498CrossRef Bong TY, Ng KC, Bao H (1993) Thermal performance of a flat-plate heat-pipe collector array. Sol Energy 50(6):491e498CrossRef
3.
go back to reference Ezekwe CI (1990) Thermal performance of heat pipe solar energy systems. Sol Wind Technol 7(4):349e354CrossRef Ezekwe CI (1990) Thermal performance of heat pipe solar energy systems. Sol Wind Technol 7(4):349e354CrossRef
4.
go back to reference Bojic M, Kalogirou S, Petronijevi K (2002) Simulation of a solar domestic water heating system using a time marching model. Renew Energy 27(3):441e452CrossRef Bojic M, Kalogirou S, Petronijevi K (2002) Simulation of a solar domestic water heating system using a time marching model. Renew Energy 27(3):441e452CrossRef
5.
go back to reference Jones BW, Golshekan M (1989) Destratification and other properties of a packed bed heat store. Int J Heat Mass Transf 32(2):351–359CrossRef Jones BW, Golshekan M (1989) Destratification and other properties of a packed bed heat store. Int J Heat Mass Transf 32(2):351–359CrossRef
6.
go back to reference Sorour MM (1988) Performance of a small sensible heat energy storage unit. Energy Convers Manage 28(3):211–217CrossRef Sorour MM (1988) Performance of a small sensible heat energy storage unit. Energy Convers Manage 28(3):211–217CrossRef
7.
go back to reference Buckles WE, Klein SA (1980) Analysis of solar domestic hot water heaters. Sol Energy 25(5):417–424CrossRef Buckles WE, Klein SA (1980) Analysis of solar domestic hot water heaters. Sol Energy 25(5):417–424CrossRef
8.
go back to reference Michaelides IM, Wilson DR (1997) Simulation studies of the position of the auxiliary heater in thermosyphon solar water heating systems. Renew Energy 10(1):35–42CrossRef Michaelides IM, Wilson DR (1997) Simulation studies of the position of the auxiliary heater in thermosyphon solar water heating systems. Renew Energy 10(1):35–42CrossRef
9.
go back to reference Wongsuwan W, Kumar S (2005) Forced circulation solar water heater performance prediction by TRNSYS and ANN. Int J Sustain Energy 24(2):69–86CrossRef Wongsuwan W, Kumar S (2005) Forced circulation solar water heater performance prediction by TRNSYS and ANN. Int J Sustain Energy 24(2):69–86CrossRef
10.
go back to reference Furbo S, Vejan NK, Shah LJ (2005) Thermal performance of a large low flow solar heating system with a highly thermally stratified tank. ASME J Sol Energy Eng 127:15–20CrossRef Furbo S, Vejan NK, Shah LJ (2005) Thermal performance of a large low flow solar heating system with a highly thermally stratified tank. ASME J Sol Energy Eng 127:15–20CrossRef
11.
go back to reference Nayak JK, Amer EH (2000) Experimental and theoretical evaluation of dynamic test procedures for solar flat-plate collectors. Sol Energy 69(5):377–401CrossRef Nayak JK, Amer EH (2000) Experimental and theoretical evaluation of dynamic test procedures for solar flat-plate collectors. Sol Energy 69(5):377–401CrossRef
12.
go back to reference Tsilingiris PT (1996) Solar water-heating design—a new simplified dynamic approach. Sol Energy 57(1):19–28CrossRef Tsilingiris PT (1996) Solar water-heating design—a new simplified dynamic approach. Sol Energy 57(1):19–28CrossRef
13.
go back to reference Kikas NP (1995) Laminar flow distribution in solar systems. Sol Energy 54(4):209–217CrossRef Kikas NP (1995) Laminar flow distribution in solar systems. Sol Energy 54(4):209–217CrossRef
14.
go back to reference Prapas DE, Veliannis I, Evangelopoulos A, Sotiropoulos BA (1995) Large DHW solar system with distributed storage tanks. Sol Energy 55(3):175–184CrossRef Prapas DE, Veliannis I, Evangelopoulos A, Sotiropoulos BA (1995) Large DHW solar system with distributed storage tanks. Sol Energy 55(3):175–184CrossRef
15.
go back to reference Fanney AH, Klein SA (1988) Thermal performance comparisons for solar hot water systems subjected to various collector and heat exchanger flow rates. Sol Energy 40(1):1–11CrossRef Fanney AH, Klein SA (1988) Thermal performance comparisons for solar hot water systems subjected to various collector and heat exchanger flow rates. Sol Energy 40(1):1–11CrossRef
16.
go back to reference Chiou JP (1982) The effect of non-uniform fluid flow distribution on the thermal performance of solar collectors. Sol Energy 29(6):487–502CrossRef Chiou JP (1982) The effect of non-uniform fluid flow distribution on the thermal performance of solar collectors. Sol Energy 29(6):487–502CrossRef
17.
go back to reference Klein SA, Beckman WA (1979) A general design method for closed loop solar energy systems. Sol Energy 22:269–282CrossRef Klein SA, Beckman WA (1979) A general design method for closed loop solar energy systems. Sol Energy 22:269–282CrossRef
18.
go back to reference Klein SA et al (2004) TRNSYS Version. 16, Solar Energy Laboratory, University of Wisconsin-Madison Klein SA et al (2004) TRNSYS Version. 16, Solar Energy Laboratory, University of Wisconsin-Madison
Metadata
Title
Optimizing Solar Hot Water Systems (Closed Systems) for Air-Conditioning Cycles in TRNSYS
Authors
A Kaabi Nejadian
Ali Mohammadi
Behnoosh Bakhtiari Heleyleh
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-18215-5_57