Skip to main content
Top
Published in: Wireless Personal Communications 1/2022

07-03-2022

Optimizing Spectrum Sensing by Using Artificial Neural Network in Cognitive Radio Sensor Networks

Authors: S. Esakki Rajavel, T. Aruna, G. Rajakumar, A. Tony Claudia

Published in: Wireless Personal Communications | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Resource allocation is most needed in the next generation of Cognitive radio networks these techniques are used to increase the Cognitive radio network’s performance. But, it is difficult to accomplish these techniques in real-time performance wireless. In this paper, a resource allocation technique based on artificial neural networks (ANN) is proposed which helps to reduce the power consumption in the network. The goal of the proposed scheme is to secure data transmission and to increase the uplink and downlink speed with less bit error rate. From the Simulation results, it can be observed that the proposed technique based on ANN is efficient in terms of the computation time related to the other resource allocation techniques. To increase the security of the data transmission in networks Location-based key management system is used. This paper is implemented by NS2.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kong, F., Cho, J., & Lee, B. (2017). Optimizing spectrum sensing time with adapitive sensing interval for energy- efficient CRSNs. IEEE Sensors Journal, 17(22), 7578–7588.CrossRef Kong, F., Cho, J., & Lee, B. (2017). Optimizing spectrum sensing time with adapitive sensing interval for energy- efficient CRSNs. IEEE Sensors Journal, 17(22), 7578–7588.CrossRef
2.
go back to reference Almasaeid, H. M, Jawadwala, T. H., & Kamal, A. E. (2010). On-demand multicast routing in cognitive radio mesh networks. In Proceedings of IEEE Global Telecommunications Conference, pp. 1–5. Almasaeid, H. M, Jawadwala, T. H., & Kamal, A. E. (2010). On-demand multicast routing in cognitive radio mesh networks. In Proceedings of IEEE Global Telecommunications Conference, pp. 1–5.
3.
go back to reference Askari, M, Kavian, Y. S, Kaabi, H., Rashvand, H. F. (2012). A channel assignment algorithm for cognitive radio wireless sensor networks. In Proceedings of Wireless Sensor System (WSS), p. 12. Askari, M, Kavian, Y. S, Kaabi, H., Rashvand, H. F. (2012). A channel assignment algorithm for cognitive radio wireless sensor networks. In Proceedings of Wireless Sensor System (WSS), p. 12.
4.
go back to reference Atapattu, S., Tellambura, C., & Jiang, H. (2010). Analysis of area under the ROC curve of energy detection. IEEE Transactions on Wireless Communications, 9(3), 1216–1225.CrossRef Atapattu, S., Tellambura, C., & Jiang, H. (2010). Analysis of area under the ROC curve of energy detection. IEEE Transactions on Wireless Communications, 9(3), 1216–1225.CrossRef
5.
go back to reference Awin, F., Abdel Raheem, E., & Ahmadi, M. (2017). Joint optimal transmission power and sensing time for energy efficient spectrum sensing in cognitive radio system. IEEE Sensors Journals, 17(2), 369–376.CrossRef Awin, F., Abdel Raheem, E., & Ahmadi, M. (2017). Joint optimal transmission power and sensing time for energy efficient spectrum sensing in cognitive radio system. IEEE Sensors Journals, 17(2), 369–376.CrossRef
6.
go back to reference de Souza Lima Moreira, G., & de Souza, R. A. A. (2016). On the throughput of cognitive radio networks using eigenvalue-based cooperative spectrum sensing under complex Nakagami-m fading. In Proceedings International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–6. de Souza Lima Moreira, G., & de Souza, R. A. A. (2016). On the throughput of cognitive radio networks using eigenvalue-based cooperative spectrum sensing under complex Nakagami-m fading. In Proceedings International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–6.
7.
go back to reference Deepak, G. C., & Navaie, K. (2013). On the sensing time and achievable throughput in sensor-enabled cognitive radio networks. In Proceedings of Wireless Communications Systems (ISWCS), pp. 1–5. Deepak, G. C., & Navaie, K. (2013). On the sensing time and achievable throughput in sensor-enabled cognitive radio networks. In Proceedings of Wireless Communications Systems (ISWCS), pp. 1–5.
8.
go back to reference Ewaisha, A., Sultan, A., & ElBatt, T. (2011). Optimization of channel sensing time and order for cognitive radios. In Proceedings of Wireless Communications Network Conference (WCNC), pp. 1414–1419. Ewaisha, A., Sultan, A., & ElBatt, T. (2011). Optimization of channel sensing time and order for cognitive radios. In Proceedings of Wireless Communications Network Conference (WCNC), pp. 1414–1419.
9.
go back to reference Fu, J., Yibing, Z., Yi, L., Shuo, L., & Jun, P. (2015). The energy efficiency optimization based on dynamic spectrum sensing and nodes scheduling in cognitive radio sensor networks. In Proceedings Control Decision Conference (CCDC), pp. 4371–4378. Fu, J., Yibing, Z., Yi, L., Shuo, L., & Jun, P. (2015). The energy efficiency optimization based on dynamic spectrum sensing and nodes scheduling in cognitive radio sensor networks. In Proceedings Control Decision Conference (CCDC), pp. 4371–4378.
10.
go back to reference He, H., Li, G. Y., & Li, S. (2013). Adaptive spectrum sensing for time-varying channels in cognitive radios. IEEE Wireless Communications Letter, 2(2), 1–4.CrossRef He, H., Li, G. Y., & Li, S. (2013). Adaptive spectrum sensing for time-varying channels in cognitive radios. IEEE Wireless Communications Letter, 2(2), 1–4.CrossRef
11.
go back to reference Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics Signal Process., 8(5), 742–758.CrossRef Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics Signal Process., 8(5), 742–758.CrossRef
12.
go back to reference Bjornson, E., Larsson, E., & Debbah, M. (2016). Massive MIMO for maximal spectral efficiency: How many users and pilots should be allocated? IEEE Transactions on Wireless Communications, 15(2), 1293–1308.CrossRef Bjornson, E., Larsson, E., & Debbah, M. (2016). Massive MIMO for maximal spectral efficiency: How many users and pilots should be allocated? IEEE Transactions on Wireless Communications, 15(2), 1293–1308.CrossRef
13.
go back to reference Ho, W. W. L., & Liang, Y.-C. (2009). Optimal resource allocation for multiuser MIMO-OFDM systems with user rate constraints. IEEE Transactions on Vehicular Technology, 58(3), 1190–1203.CrossRef Ho, W. W. L., & Liang, Y.-C. (2009). Optimal resource allocation for multiuser MIMO-OFDM systems with user rate constraints. IEEE Transactions on Vehicular Technology, 58(3), 1190–1203.CrossRef
14.
go back to reference Jose, J., Ashikhmin, A., Marzetta, T., & Vishwanath, S. (2011). Pilot contamination and precoding in multi-cell TDD systems. IEEE Transactions on Communications, 10(8), 2640–2651. Jose, J., Ashikhmin, A., Marzetta, T., & Vishwanath, S. (2011). Pilot contamination and precoding in multi-cell TDD systems. IEEE Transactions on Communications, 10(8), 2640–2651.
15.
go back to reference Marzetta, T. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.CrossRef Marzetta, T. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.CrossRef
16.
go back to reference Dai, L., Gao, X., Su, X., Han, S., & Wang, Z. (2015). Low-complexity soft-output signal detection based on Gauss-Seidel method for uplink multi-user large-scale MIMO systems. IEEE Transactions on Vehicular Technology, 64(10), 4839–4845.CrossRef Dai, L., Gao, X., Su, X., Han, S., & Wang, Z. (2015). Low-complexity soft-output signal detection based on Gauss-Seidel method for uplink multi-user large-scale MIMO systems. IEEE Transactions on Vehicular Technology, 64(10), 4839–4845.CrossRef
17.
go back to reference Tachwali, Y., Lo, B. F., Akyildiz, I. F., & Agusti, R. (2013). Multiuser resource allocation optimization using bandwidth-power product in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 31(3), 451–463.CrossRef Tachwali, Y., Lo, B. F., Akyildiz, I. F., & Agusti, R. (2013). Multiuser resource allocation optimization using bandwidth-power product in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 31(3), 451–463.CrossRef
18.
go back to reference Hao, W., Yang, S., Muta, O., Gacanin, H., & Furukawa, H. (2016). Energye_cient resource allocation in sensing-based spectrum sharing for cooperative cognitive radio networks. IEICE Transactions on Communications, 99(8), 1763–1771.CrossRef Hao, W., Yang, S., Muta, O., Gacanin, H., & Furukawa, H. (2016). Energye_cient resource allocation in sensing-based spectrum sharing for cooperative cognitive radio networks. IEICE Transactions on Communications, 99(8), 1763–1771.CrossRef
19.
go back to reference Ahmad, A., Ahmad, S., Rehmani, M. H., & Hassan, N. U. (2015). A survey on radio resource allocation in cognitive radio sensor networks. IEEE Commun. Surveys and Tutorials, 17(2), 888–917.CrossRef Ahmad, A., Ahmad, S., Rehmani, M. H., & Hassan, N. U. (2015). A survey on radio resource allocation in cognitive radio sensor networks. IEEE Commun. Surveys and Tutorials, 17(2), 888–917.CrossRef
20.
go back to reference Almalfouh, S. M., & Stuber, G. L. (2011). Interference-aware radio resource allocation in OFDMA-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 60(4), 1699–1713.CrossRef Almalfouh, S. M., & Stuber, G. L. (2011). Interference-aware radio resource allocation in OFDMA-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 60(4), 1699–1713.CrossRef
21.
go back to reference Hao, W., Yang, S., Ning, B., & Hao, W. (2015). Optimal resource allocation for cooperative orthogonal frequency division multiplexing-based cognitive radio networks with imperfect spectrum sensing. IET Communications, 9(4), 548–557.CrossRef Hao, W., Yang, S., Ning, B., & Hao, W. (2015). Optimal resource allocation for cooperative orthogonal frequency division multiplexing-based cognitive radio networks with imperfect spectrum sensing. IET Communications, 9(4), 548–557.CrossRef
22.
go back to reference Dhanjal, S. (2001). Artificial neural networks in speech processing: problems and challenges. In IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, vol. 2, pp. 510–513 Dhanjal, S. (2001). Artificial neural networks in speech processing: problems and challenges. In IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, vol. 2, pp. 510–513
23.
go back to reference Giribone, P., Revetria, R., Antonetti, M., & Tabolacci, R. (2000) Use of artificial neural networks as support for energy saving procedures in telecommunications. Telecomm Energy Conf., INTELEC. pp. 159–162 Giribone, P., Revetria, R., Antonetti, M., & Tabolacci, R. (2000) Use of artificial neural networks as support for energy saving procedures in telecommunications. Telecomm Energy Conf., INTELEC. pp. 159–162
24.
go back to reference Haykin, S. (1999). Neural networks: A comprehensive foundation. New Jersey: Prentice-Hall.MATH Haykin, S. (1999). Neural networks: A comprehensive foundation. New Jersey: Prentice-Hall.MATH
25.
go back to reference Andra, P. (2005). A neural activity pattern systems. In Proceedings of Neuro Computing vol. 65–66, pp. 531–536, Elsevier. Andra, P. (2005). A neural activity pattern systems. In Proceedings of Neuro Computing vol. 65–66, pp. 531–536, Elsevier.
26.
go back to reference Tumuluru, V. K., Wang, P., & Niyato, D. (2010). A neural network based spectrum prediction scheme for cognitive radio. In IEEE International Conference ICC, pp. 1–5. Tumuluru, V. K., Wang, P., & Niyato, D. (2010). A neural network based spectrum prediction scheme for cognitive radio. In IEEE International Conference ICC, pp. 1–5.
27.
go back to reference Wang, L., Ngo, H. Q., Elkashlan, M., Duong, T. Q., & Wong, K. (2017). Massive MIMO in spectrum sharing networks: Achievable rate and power efficiency. IEEE Systems Journal, 11(1), 20–31.CrossRef Wang, L., Ngo, H. Q., Elkashlan, M., Duong, T. Q., & Wong, K. (2017). Massive MIMO in spectrum sharing networks: Achievable rate and power efficiency. IEEE Systems Journal, 11(1), 20–31.CrossRef
28.
go back to reference Filippou, M., Gesbert, D., & Yin, H. (2012). Decontaminating pilots in cognitive massive MIMO networks. In Proceedings of the International Symposium on Wireless Communication Systems, pp. 816–820. Filippou, M., Gesbert, D., & Yin, H. (2012). Decontaminating pilots in cognitive massive MIMO networks. In Proceedings of the International Symposium on Wireless Communication Systems, pp. 816–820.
29.
go back to reference Xie, H., Wang, B., Gao, F., & Jin, S. (2016). A full-space spectrum-sharing strategy for massive MIMO cognitive radio systems. IEEE Journal on Selected Areas in Communications, 34(10), 2537–2549.CrossRef Xie, H., Wang, B., Gao, F., & Jin, S. (2016). A full-space spectrum-sharing strategy for massive MIMO cognitive radio systems. IEEE Journal on Selected Areas in Communications, 34(10), 2537–2549.CrossRef
30.
go back to reference Cladia, A. T., Rajavel, S. E. (2018). Optimizing spectrum sensing for energy efficient cognitive radio sensor networks. In International Conference on Smart Systems and Inventive Technology (ICSSIT 2018), IEEE Xplore Part Number: CFP18P17-ART; ISBN:978–1–5386–5873–4. Cladia, A. T., Rajavel, S. E. (2018). Optimizing spectrum sensing for energy efficient cognitive radio sensor networks. In International Conference on Smart Systems and Inventive Technology (ICSSIT 2018), IEEE Xplore Part Number: CFP18P17-ART; ISBN:978–1–5386–5873–4.
Metadata
Title
Optimizing Spectrum Sensing by Using Artificial Neural Network in Cognitive Radio Sensor Networks
Authors
S. Esakki Rajavel
T. Aruna
G. Rajakumar
A. Tony Claudia
Publication date
07-03-2022
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2022
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09578-1

Other articles of this Issue 1/2022

Wireless Personal Communications 1/2022 Go to the issue