Skip to main content
Top

2017 | OriginalPaper | Chapter

54. Organic Solar Cells

Authors : Masahiro Hiramoto, Yusuke Shinmura

Published in: Springer Handbook of Electronic and Photonic Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One of the responsibilities of scientists is to help develop new ways in which we can generate energy, since gaining control over energy resources such as petroleum has been one of the main reasons for conflict between nations. Renewable energy generated by solar cells is one of the potential solutions to the problem of maintaining our energy supply and these have been studied intensively for about half-century. Today, silicon solar cells have already been commercialized and have become an indispensable source of electricity. However, the price of electricity produced by silicon solar cells is still higher than that produced by petroleum. In order to increase the production of energy by solar cells, the price of electricity produced by solar cells needs to be lower than that produced by petroleum. Organic solar cells have the potential to be part of the next generation of low-cost solar cells. There was a steep increase in the power-conversion efficiency of organic solar cells around the year 2000, indicating that the technology needed to bring them to a commercial level would be established by around 2020, taking into consideration the example of organic electroluminescent devices for which scientific breakthroughs were made in 1987 and commercialization occurred around 2010. Now, in 2015, the power-conversion efficiency of organic solar cells has reached 12%.
Organic solar cells have many advantages; they are flexible, printable, light weight, and low cost, can be fashionably designed, and can be fabricated by roll-to-roll production, etc. Printed organic solar cells can be attached to the roofs, windows, and walls of houses and buildings. Automobiles wrapped with colorfully printed organic solar cells can be fabricated. Moreover, they are suitable for constructing solar power plants in space, since their light weight allows them to be easily put into orbit. In this section, the history, fundamental principles, and recent progress in organic solar cells are summarized.
The most essential factor for organic solar cells is the existence of excitons, that is, strongly bound electron–hole pairs. To efficiently generate photocarriers from excitons, donor–acceptor sensitization is used. Fullerenes acting as acceptors are used in present organic solar cells. Since the diffusion length of excitons is extremely small, blended junctions are used. Route formation both for photogenerated electrons and holes to the respective electrodes by phase separation is required for organic blended junctions. The magnitude of the photovoltage that can be obtained is determined by the difference between the lowest unoccupied molecular orbital (LUMO) of the acceptor molecules and the highest occupied molecular orbital (HOMO) of the donor molecules. Utilization of tandem cells has been effective in increasing the power-conversion efficiency. Today, the power-conversion efficiency of organic solar cells has reached 12%. For the organic semiconductor films used in organic solar cells, both small molecule films deposited by the dry process of vacuum evaporation and polymer films deposited by the wet process of spin coating are used.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
54.2
go back to reference A.K. Ghosh, D.L. Morel, T. Feng, R.F. Shaw, C.A. Rowe Jr.: J. Appl. Phys. 45, 230 (1974)CrossRef A.K. Ghosh, D.L. Morel, T. Feng, R.F. Shaw, C.A. Rowe Jr.: J. Appl. Phys. 45, 230 (1974)CrossRef
54.7
54.8
54.9
go back to reference N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl: Science 285, 1474 (1992)CrossRef N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl: Science 285, 1474 (1992)CrossRef
54.10
go back to reference G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger: Science 270, 1789 (1995)CrossRef G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger: Science 270, 1789 (1995)CrossRef
54.11
54.12
go back to reference M. Hiramoto, T. Yamaga, M. Danno, K. Suemori, Y. Matsumura, M. Yokoyama: Appl. Phys. Lett. 88, 213105 (2006)CrossRef M. Hiramoto, T. Yamaga, M. Danno, K. Suemori, Y. Matsumura, M. Yokoyama: Appl. Phys. Lett. 88, 213105 (2006)CrossRef
54.14
go back to reference Y. Matsuo, Y. Sato, T. Niinomi, I. Soga, H. Tanaka, E. Nakamura: J. Am. Chem. Soc. 131, 16048 (2009)CrossRef Y. Matsuo, Y. Sato, T. Niinomi, I. Soga, H. Tanaka, E. Nakamura: J. Am. Chem. Soc. 131, 16048 (2009)CrossRef
54.15
go back to reference F. Padinger, F.R.S. Rittberger, N.S. Sariciftci: Adv. Funct. Mater. 13, 85 (2003)CrossRef F. Padinger, F.R.S. Rittberger, N.S. Sariciftci: Adv. Funct. Mater. 13, 85 (2003)CrossRef
54.16
go back to reference G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang: Nat. Mater. 4, 864 (2005)CrossRef G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang: Nat. Mater. 4, 864 (2005)CrossRef
54.18
go back to reference Y. Kim, S. Cook, S.M. Tuladhar, S.A. Choulis, J. Nelson, J.R. Durrant, D.D.C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, M. Ree: Nat. Mater. 5, 197 (2006)CrossRef Y. Kim, S. Cook, S.M. Tuladhar, S.A. Choulis, J. Nelson, J.R. Durrant, D.D.C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, M. Ree: Nat. Mater. 5, 197 (2006)CrossRef
54.19
54.20
go back to reference M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec: Adv. Mater. 18, 789 (2006)CrossRef M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec: Adv. Mater. 18, 789 (2006)CrossRef
54.22
54.23
54.24
go back to reference J. Xue, S. Uchida, B.P. Rand, S.R. Forrest: Appl. Phys. Lett. 85, 5757 (2004)CrossRef J. Xue, S. Uchida, B.P. Rand, S.R. Forrest: Appl. Phys. Lett. 85, 5757 (2004)CrossRef
54.25
go back to reference J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. Chen, J. Gao, G. Li, Y. Yang: Nat. Commun. 4, 1446 (2012)CrossRef J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. Chen, J. Gao, G. Li, Y. Yang: Nat. Commun. 4, 1446 (2012)CrossRef
54.26
go back to reference C. Chen, W. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong, Y. Yang: Adv. Mater. 26, 5670 (2014)CrossRef C. Chen, W. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong, Y. Yang: Adv. Mater. 26, 5670 (2014)CrossRef
54.28
54.29
go back to reference M. Hiramoto, M. Kubo, Y. Shinmura, N. Ishiyama, T. Kaji, K. Sakai, T. Ohno, M. Izaki: Electronics 3, 351 (2014)CrossRef M. Hiramoto, M. Kubo, Y. Shinmura, N. Ishiyama, T. Kaji, K. Sakai, T. Ohno, M. Izaki: Electronics 3, 351 (2014)CrossRef
54.30
go back to reference C. Brabec, V. Dyakonov, U. Scherf (Eds.): Organic Photovoltaics, Materials, Device Physics, and Manufacturing Technologies (Wiley, Weinheim 2008) C. Brabec, V. Dyakonov, U. Scherf (Eds.): Organic Photovoltaics, Materials, Device Physics, and Manufacturing Technologies (Wiley, Weinheim 2008)
54.31
go back to reference F.C. Krebs (Ed.): Stability and Degradation of Organic and Polymer Solar Cells (Wiley, West Sussex 2012) F.C. Krebs (Ed.): Stability and Degradation of Organic and Polymer Solar Cells (Wiley, West Sussex 2012)
54.32
go back to reference C. Hoth, A. Seemann, R. Steim, T. Ameri, H. Azimi, C.J. Brabec: Printed organic solar cells. In: Solar Cell Materials, Developing Technologies, ed. by G. Conibeer, A. Willoughby (Wiley, West Sussex 2014) p. 217CrossRef C. Hoth, A. Seemann, R. Steim, T. Ameri, H. Azimi, C.J. Brabec: Printed organic solar cells. In: Solar Cell Materials, Developing Technologies, ed. by G. Conibeer, A. Willoughby (Wiley, West Sussex 2014) p. 217CrossRef
54.33
go back to reference S.-S. Sun, N.S. Sariciftci (Eds.): Organic Photovoltaics, Mechanisms, Materials, and Devices (Taylor Francis, London 2005) S.-S. Sun, N.S. Sariciftci (Eds.): Organic Photovoltaics, Mechanisms, Materials, and Devices (Taylor Francis, London 2005)
Metadata
Title
Organic Solar Cells
Authors
Masahiro Hiramoto
Yusuke Shinmura
Copyright Year
2017
Publisher
Springer International Publishing
DOI
https://doi.org/10.1007/978-3-319-48933-9_54