Skip to main content
Top

2017 | OriginalPaper | Chapter

2. Organic/TiO2 Nanocomposite Membranes: Recent Developments

Authors : Javier Miguel Ochando-Pulido, José Raúl Corpas-Martínez, Marco Stoller, Antonio Martínez-Férez

Published in: Organic-Inorganic Composite Polymer Electrolyte Membranes

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fuel cells may become a key energy management, but technical and economic feasibility still need to be sensibly improved. Many studies in order to overcome the limits of the technology are nowadays in progress. A promising and interesting development solution appears to be the improvement of the membrane properties used in fuel cells by nanotechnologies. In this book chapter, a review on the recent developments about organic/TiO2 nanocomposite membranes will be presented, and the results obtained in the recent years will be discussed. As a main issue, polymer composites containing a small amount of inorganic materials lead to a significant increment in the interfacial area of the organic–inorganic phases, enhancing a considerable volume fraction of the interfacial polymer. Moreover, these composite systems may be capable to provide unique combination of organic properties, such as electrical property and processability, together with inorganic, comprising thermal and chemical stability and minor fuel permeability. To sum up, the organic–inorganic composite systems might also provide improved chemical and mechanical stability, as well as high proton conductivity at high temperatures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kim MS, Lee SJ, Kang JU, Bae KJ (2005) Preparations of polypropylene membrane with high porosity in supercritical CO2 and its application for PEMFC. J Ind Eng Chem 11:187–193 Kim MS, Lee SJ, Kang JU, Bae KJ (2005) Preparations of polypropylene membrane with high porosity in supercritical CO2 and its application for PEMFC. J Ind Eng Chem 11:187–193
2.
go back to reference Jang SY, Han SH (2012) Preparation of high styrenic sulfonated polySEPS/clay composite film for proton exchange membranes (PEMs). J Ind Eng Chem 18:1280–1285CrossRef Jang SY, Han SH (2012) Preparation of high styrenic sulfonated polySEPS/clay composite film for proton exchange membranes (PEMs). J Ind Eng Chem 18:1280–1285CrossRef
3.
go back to reference Lee SJ, Quan ND, Hwang JM, Lee SD, Kim HG, Lee HJ, Kim HS (2006) Polymer electrolyte membranes for fuel cells. J Ind Eng Chem 12:175–183CrossRef Lee SJ, Quan ND, Hwang JM, Lee SD, Kim HG, Lee HJ, Kim HS (2006) Polymer electrolyte membranes for fuel cells. J Ind Eng Chem 12:175–183CrossRef
4.
go back to reference Ayad MM, El-Nasr AA, Stejskal J (2012) Kinetics and isotherm studies of methylene blue adsorption onto polyaniline nanotubes base/silica composite. J Ind Eng Chem 18:1964–1969CrossRef Ayad MM, El-Nasr AA, Stejskal J (2012) Kinetics and isotherm studies of methylene blue adsorption onto polyaniline nanotubes base/silica composite. J Ind Eng Chem 18:1964–1969CrossRef
5.
go back to reference Liou TH, Lin HS (2012) Synthesis and surface characterization of silica nanoparticles from industrial resin waste controlled by optimal gelation conditions. J Ind Eng Chem 18:1428–1437CrossRef Liou TH, Lin HS (2012) Synthesis and surface characterization of silica nanoparticles from industrial resin waste controlled by optimal gelation conditions. J Ind Eng Chem 18:1428–1437CrossRef
6.
go back to reference Hosseini SM, Madaeni SS, Zendehnam A, Moghadassi AR, Khodabakhshi AR, Sanaeepur H (2013) Preparation and characterization of PVC based heterogeneous ion exchange membrane coated with Ag nanoparticles by (thermal-plasma) treatment assisted surface modification. J Ind Eng Chem 19:854–862CrossRef Hosseini SM, Madaeni SS, Zendehnam A, Moghadassi AR, Khodabakhshi AR, Sanaeepur H (2013) Preparation and characterization of PVC based heterogeneous ion exchange membrane coated with Ag nanoparticles by (thermal-plasma) treatment assisted surface modification. J Ind Eng Chem 19:854–862CrossRef
7.
go back to reference Khajenoori M, Rezaei M, Nematollahi B (2013) Preparation of noble metal nanocatalysts and their applications in catalytic partial oxidation of methane. J Ind Eng Chem 19:981–986CrossRef Khajenoori M, Rezaei M, Nematollahi B (2013) Preparation of noble metal nanocatalysts and their applications in catalytic partial oxidation of methane. J Ind Eng Chem 19:981–986CrossRef
8.
go back to reference Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35:9349–9384CrossRef Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35:9349–9384CrossRef
9.
go back to reference Licoccia S, Traversa E (2006) Increasing the operation temperature of polymer electrolyte membranes for fuel cells: from nanocomposites to hybrids. Power Sour 159:12–20CrossRef Licoccia S, Traversa E (2006) Increasing the operation temperature of polymer electrolyte membranes for fuel cells: from nanocomposites to hybrids. Power Sour 159:12–20CrossRef
10.
go back to reference Slade SM, Smith JR, Campbell SA, Ralph TR, Ponce De León C, Walsh FC (2010) Characterisation of a re-cast composite Nafion® 1100 series of proton exchange membranes incorporating inert inorganic oxide particles. Electrochim Acta 55:6818–6829CrossRef Slade SM, Smith JR, Campbell SA, Ralph TR, Ponce De León C, Walsh FC (2010) Characterisation of a re-cast composite Nafion® 1100 series of proton exchange membranes incorporating inert inorganic oxide particles. Electrochim Acta 55:6818–6829CrossRef
11.
go back to reference Mohammadi G, Jahanshahi M, Rahimpour A (2013) Fabrication and evaluation of Nafion nanocomposite membrane based on ZrO2–TiO2 binary nanoparticles as fuel cell MEA. Int J Hydrogen Energy 38:9387–9394CrossRef Mohammadi G, Jahanshahi M, Rahimpour A (2013) Fabrication and evaluation of Nafion nanocomposite membrane based on ZrO2–TiO2 binary nanoparticles as fuel cell MEA. Int J Hydrogen Energy 38:9387–9394CrossRef
12.
go back to reference Liu Z, Guo B, Huang J, Hong L, Han M, Gan LM (2006) Nano-TiO2-coated polymer electrolyte membranes for direct methanol fuel cells. J Power Sour 157:207–211CrossRef Liu Z, Guo B, Huang J, Hong L, Han M, Gan LM (2006) Nano-TiO2-coated polymer electrolyte membranes for direct methanol fuel cells. J Power Sour 157:207–211CrossRef
13.
go back to reference Santiago EI, Isidoro RA, Dresch MA, Matos BR, Linardi M, Fonseca FC (2009) Nafion–TiO2 hybrid electrolytes for stable operation of PEM fuel cells at high temperature. Electrochim Acta 54:4111–4117CrossRef Santiago EI, Isidoro RA, Dresch MA, Matos BR, Linardi M, Fonseca FC (2009) Nafion–TiO2 hybrid electrolytes for stable operation of PEM fuel cells at high temperature. Electrochim Acta 54:4111–4117CrossRef
14.
go back to reference Li ZH, Zhang HP, Zhang P, Li GC, Wu YP, Zhou XD (2008) Effects of the porous structure on conductivity of nanocomposite polymer electrolyte for lithium ion batteries. J Membr Sci 322:416–422CrossRef Li ZH, Zhang HP, Zhang P, Li GC, Wu YP, Zhou XD (2008) Effects of the porous structure on conductivity of nanocomposite polymer electrolyte for lithium ion batteries. J Membr Sci 322:416–422CrossRef
15.
go back to reference Amjadi M, Rowshanzamir Peighambardoust SJ, Hosseini MG, Eikani MH (2010) Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells. Int J Hydrogen Energy 5:9252–9260CrossRef Amjadi M, Rowshanzamir Peighambardoust SJ, Hosseini MG, Eikani MH (2010) Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells. Int J Hydrogen Energy 5:9252–9260CrossRef
16.
go back to reference Zhengbang W, Tang H, Mu P (2011) Self-assembly of durable Nafion/TiO2 nanowire electrolyte membrane temperature PEM fuel cells. J Membr Sci 369:250–257CrossRef Zhengbang W, Tang H, Mu P (2011) Self-assembly of durable Nafion/TiO2 nanowire electrolyte membrane temperature PEM fuel cells. J Membr Sci 369:250–257CrossRef
17.
go back to reference Cozzi D, Bonis C, Epifanio A, Mecheri B, Tavares AC, Licoccia S (2014) Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications. J Power Sour 248:1127–1132CrossRef Cozzi D, Bonis C, Epifanio A, Mecheri B, Tavares AC, Licoccia S (2014) Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications. J Power Sour 248:1127–1132CrossRef
18.
go back to reference Beauger C, Testut L, Berthom-Fabry S, Georgi F, Guetaz L (2016) Doped TiO2 aerogels as alternative catalyst supports for proton exchange membrane fuel cells: a comparative study of Nb, V and Ta dopants. Microporous Mesoporous Mater 232:109–118CrossRef Beauger C, Testut L, Berthom-Fabry S, Georgi F, Guetaz L (2016) Doped TiO2 aerogels as alternative catalyst supports for proton exchange membrane fuel cells: a comparative study of Nb, V and Ta dopants. Microporous Mesoporous Mater 232:109–118CrossRef
19.
go back to reference Gojković SL, Babić BM, Radmilović VR, Krstajić NV (2010) Nb-doped TiO2 as a support of Pt and Pt–Ru anode catalyst for PEMFCs. J Electroanal Chem 639:161–166CrossRef Gojković SL, Babić BM, Radmilović VR, Krstajić NV (2010) Nb-doped TiO2 as a support of Pt and Pt–Ru anode catalyst for PEMFCs. J Electroanal Chem 639:161–166CrossRef
20.
go back to reference Houn-Rhee C, Kim Y, Sung J, Kyung H, Chang H (2006) Nanocomposite membranes of surface-sulfonated titanate and Nafion® for direct methanol fuel cells. Power sour 159:1015–1024CrossRef Houn-Rhee C, Kim Y, Sung J, Kyung H, Chang H (2006) Nanocomposite membranes of surface-sulfonated titanate and Nafion® for direct methanol fuel cells. Power sour 159:1015–1024CrossRef
21.
go back to reference Jun Y, Zarrin H, Fowler M, Chen Z (2011) Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells. Hydrogen energy 36:6073–6081CrossRef Jun Y, Zarrin H, Fowler M, Chen Z (2011) Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells. Hydrogen energy 36:6073–6081CrossRef
22.
go back to reference Yang C, Chiu S, Lee K, Chien W, Lin C, Huang C (2008) Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell. Power sour 184:44–51CrossRef Yang C, Chiu S, Lee K, Chien W, Lin C, Huang C (2008) Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell. Power sour 184:44–51CrossRef
23.
go back to reference Yang CC, Chien WC, Li YJ (2010) Direct methanol fuel cell based on poly(vinyl alcohol)/titanium oxide nanotubes/poly(styrene sulfonic acid) (PVA/nt–TiO2/PSSA) composite polymer membrane. J Power Sour 195(11):3407–3415CrossRef Yang CC, Chien WC, Li YJ (2010) Direct methanol fuel cell based on poly(vinyl alcohol)/titanium oxide nanotubes/poly(styrene sulfonic acid) (PVA/nt–TiO2/PSSA) composite polymer membrane. J Power Sour 195(11):3407–3415CrossRef
24.
go back to reference Mroczkowska-Szerszen M, Siekierski M, Letmanowski R, Zabost D, Piszcz M, Zukowska G, Sasim E, Wieczorek W, Dudek M, Struzik M (2013) Synthetic preparation of proton conducting polyvinyl alcohol and TiO2-doped inorganic glasses for hydrogen fuel cell applications. Electrochim Acta 104:487–495CrossRef Mroczkowska-Szerszen M, Siekierski M, Letmanowski R, Zabost D, Piszcz M, Zukowska G, Sasim E, Wieczorek W, Dudek M, Struzik M (2013) Synthetic preparation of proton conducting polyvinyl alcohol and TiO2-doped inorganic glasses for hydrogen fuel cell applications. Electrochim Acta 104:487–495CrossRef
25.
go back to reference Qian Y, Chi L, Zhou W, Yu Zhang Z, Zhang Z, Jian Z (2016) Fabrication of TiO2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment. Surf Sci 360:749–757CrossRef Qian Y, Chi L, Zhou W, Yu Zhang Z, Zhang Z, Jian Z (2016) Fabrication of TiO2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment. Surf Sci 360:749–757CrossRef
26.
go back to reference Hogarth WHJ, Diniz da Costa JC, Lu GQ (2005) Solid acid membranes for high temperature proton exchange membrane fuel cells. J Power Sour 142:223–237CrossRef Hogarth WHJ, Diniz da Costa JC, Lu GQ (2005) Solid acid membranes for high temperature proton exchange membrane fuel cells. J Power Sour 142:223–237CrossRef
27.
go back to reference Tripathi BP, Shahi VK (2007) SPEEK–zirconium hydrogen phosphate composite membranes with low methanol permeability prepared by electro-migration and in situ precipitation. J Colloid Interface Sci 316(2):612–621CrossRef Tripathi BP, Shahi VK (2007) SPEEK–zirconium hydrogen phosphate composite membranes with low methanol permeability prepared by electro-migration and in situ precipitation. J Colloid Interface Sci 316(2):612–621CrossRef
28.
go back to reference Karthikeyan CS, Nunes SP, Schulte K (2006) Permeability and conductivity studies on ionomer-polysilsesquioxane hybrid materials. Macromol Chem Phys 207:336–341CrossRef Karthikeyan CS, Nunes SP, Schulte K (2006) Permeability and conductivity studies on ionomer-polysilsesquioxane hybrid materials. Macromol Chem Phys 207:336–341CrossRef
29.
go back to reference Vona MLD, Ahmed Z, Bellitto S, Lenci A, Traversa E, Licoccia S (2007) SPEEK–TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol-gel process. J Membr Sci 96(2):156–161 Vona MLD, Ahmed Z, Bellitto S, Lenci A, Traversa E, Licoccia S (2007) SPEEK–TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol-gel process. J Membr Sci 96(2):156–161
30.
go back to reference Dou Z, Zhong S, Zhao C, Li X, Fu T, Na H (2008) Synthesis and characterization of a series of SPEEK/TiO2 hybrid membranes for direct methanol fuel cell. J Appl Polym Sci 109:1057–1062CrossRef Dou Z, Zhong S, Zhao C, Li X, Fu T, Na H (2008) Synthesis and characterization of a series of SPEEK/TiO2 hybrid membranes for direct methanol fuel cell. J Appl Polym Sci 109:1057–1062CrossRef
31.
go back to reference Tripathi BP, Shahi VK (2009) Surface redox polymerized SPEEK–MO2–PANI (M = Si, Zr and Ti) composite polyelectrolyte membranes impervious to methanol. Colloids Surf A 340:10–19CrossRef Tripathi BP, Shahi VK (2009) Surface redox polymerized SPEEK–MO2–PANI (M = Si, Zr and Ti) composite polyelectrolyte membranes impervious to methanol. Colloids Surf A 340:10–19CrossRef
32.
go back to reference Ayyaru S, Dharmalingam S (2013) Improved performance of microbial fuel cells using sulfonated polyether ether ketone (SPEEK) TiO2–SO3H nanocomposite membrane. RSC Adv 3:25243–25251CrossRef Ayyaru S, Dharmalingam S (2013) Improved performance of microbial fuel cells using sulfonated polyether ether ketone (SPEEK) TiO2–SO3H nanocomposite membrane. RSC Adv 3:25243–25251CrossRef
33.
go back to reference Wu H, Cao Y, Shen X, Li Z, Xu T, Jiang Z (2014) Preparation and performance of different amino acids functionalized titania-embedded sulfonated poly(ether ketone) hybrid membranes for direct methanol fuel cells. J Membr Sci 463:134–144CrossRef Wu H, Cao Y, Shen X, Li Z, Xu T, Jiang Z (2014) Preparation and performance of different amino acids functionalized titania-embedded sulfonated poly(ether ketone) hybrid membranes for direct methanol fuel cells. J Membr Sci 463:134–144CrossRef
34.
go back to reference Narayanaswamy V, Dharmalingam S (2015) Development of cation exchange resin-polymer electrolyte membranes for microbial fuel cell application. J Membr Sci 50:6302–6312 Narayanaswamy V, Dharmalingam S (2015) Development of cation exchange resin-polymer electrolyte membranes for microbial fuel cell application. J Membr Sci 50:6302–6312
35.
go back to reference Qiao Y, Bao SJ, Li CM, Cui XQ, Lu ZS, Guo J (2008) Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells. ACS Nano 2:113–119CrossRef Qiao Y, Bao SJ, Li CM, Cui XQ, Lu ZS, Guo J (2008) Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells. ACS Nano 2:113–119CrossRef
36.
go back to reference Wang Z, Tang H, Pan M (2011) Self-assembly of durable Nafion/TiO2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells. J Membr Sci 369:250–257CrossRef Wang Z, Tang H, Pan M (2011) Self-assembly of durable Nafion/TiO2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells. J Membr Sci 369:250–257CrossRef
37.
go back to reference Devrim Y, Erkan S, Bac N, Eroglu I (2009) Preparation and characterization of sulfonated polysulfone/titanium dioxide composite membranes for proton exchange membrane fuel cells. Int J Hydrogen Energy 34:3467–3475CrossRef Devrim Y, Erkan S, Bac N, Eroglu I (2009) Preparation and characterization of sulfonated polysulfone/titanium dioxide composite membranes for proton exchange membrane fuel cells. Int J Hydrogen Energy 34:3467–3475CrossRef
38.
go back to reference Park JT, Koh JH, Roh DK, Shul YG, Kim JH (2011) Proton-conducting nanocomposite membranes based on P(VDF-co-CTFE)-g-PSSA graft copolymer and TiO2–PSSA nanoparticles. Int J Hydrogen Energy 36:1820–1827CrossRef Park JT, Koh JH, Roh DK, Shul YG, Kim JH (2011) Proton-conducting nanocomposite membranes based on P(VDF-co-CTFE)-g-PSSA graft copolymer and TiO2–PSSA nanoparticles. Int J Hydrogen Energy 36:1820–1827CrossRef
39.
go back to reference Ayyaru S, Dharmalingam S (2015) A study of influence on nanocomposite membrane of sulfonated TiO2 and sulfonated polystyrene-ethylene-butylene-polystyrene for microbial fuel cell application. Energy 88:202–208CrossRef Ayyaru S, Dharmalingam S (2015) A study of influence on nanocomposite membrane of sulfonated TiO2 and sulfonated polystyrene-ethylene-butylene-polystyrene for microbial fuel cell application. Energy 88:202–208CrossRef
40.
go back to reference Aslan A, Ayhan B (2014) Nanocomposite membranes based on sulfonated polysulfone and sulfated nano-titania/NMPA for proton exchange membrane fuel cells. Solid State Ionics 255:89–95CrossRef Aslan A, Ayhan B (2014) Nanocomposite membranes based on sulfonated polysulfone and sulfated nano-titania/NMPA for proton exchange membrane fuel cells. Solid State Ionics 255:89–95CrossRef
41.
go back to reference Seger B, Kamat PV (2009) Fuel cell geared in reverse: photocatalytic hydrogen production using a TiO2/Nafion/Pt membrane assembly with no applied bias. J Phys Chem C 113:18946–18952CrossRef Seger B, Kamat PV (2009) Fuel cell geared in reverse: photocatalytic hydrogen production using a TiO2/Nafion/Pt membrane assembly with no applied bias. J Phys Chem C 113:18946–18952CrossRef
42.
go back to reference Bella F, Lamberti A, Sacco A, Bianco S, Chiodoni A, Bongiovanni R (2014) Novel electrode and electrolyte membranes: towards flexible dye-sensitized solar cell combining vertically aligned TiO2 nanotube array and light-cured polymer network. J Membr Sci 470:125–131CrossRef Bella F, Lamberti A, Sacco A, Bianco S, Chiodoni A, Bongiovanni R (2014) Novel electrode and electrolyte membranes: towards flexible dye-sensitized solar cell combining vertically aligned TiO2 nanotube array and light-cured polymer network. J Membr Sci 470:125–131CrossRef
43.
go back to reference Xu T, Zhang H, Zhong H, Ma Y, Jin H, Zhang Y (2010) Improved stability of TiO2 modified Ru85Se15/C electrocatalyst for proton exchange membrane fuel cells. Power sour 195(24):8075–8079CrossRef Xu T, Zhang H, Zhong H, Ma Y, Jin H, Zhang Y (2010) Improved stability of TiO2 modified Ru85Se15/C electrocatalyst for proton exchange membrane fuel cells. Power sour 195(24):8075–8079CrossRef
44.
go back to reference Chao WK, Huang RH, Huang CJ, Hsueh JL, Shieu FS (2010) Effect of hygroscopic platinum/titanium dioxide particles in the anode catalyst layer on the PEMFC performance. J Electrochem Soc B1012–B1018 Chao WK, Huang RH, Huang CJ, Hsueh JL, Shieu FS (2010) Effect of hygroscopic platinum/titanium dioxide particles in the anode catalyst layer on the PEMFC performance. J Electrochem Soc B1012–B1018
45.
go back to reference Matos J, Borodzinski A, Zychora AM, Kedzierzawski P, Mierzwa B, Juchniewicz K, Mazurkiewicz M, Hernández-Garrido JC (2015) Direct formic acid fuel cells on Pd catalysts supported on hybrid TiO2–C materials. Appl Catal B 163:167–178CrossRef Matos J, Borodzinski A, Zychora AM, Kedzierzawski P, Mierzwa B, Juchniewicz K, Mazurkiewicz M, Hernández-Garrido JC (2015) Direct formic acid fuel cells on Pd catalysts supported on hybrid TiO2–C materials. Appl Catal B 163:167–178CrossRef
46.
go back to reference Li Y, Liu C, Liu Y, Feng B, Li L, Pan H, Kellogg W, Higgins D, Wu G (2015) Sn-doped TiO2 modified carbon to support Pt anode catalysts for direct methanol fuel cells. J Power Sour 286:354–361CrossRef Li Y, Liu C, Liu Y, Feng B, Li L, Pan H, Kellogg W, Higgins D, Wu G (2015) Sn-doped TiO2 modified carbon to support Pt anode catalysts for direct methanol fuel cells. J Power Sour 286:354–361CrossRef
47.
go back to reference Zhang C, Yu H, Fu L, Xiao Y, Gao Y, Li Y, Zeng Y, Jia J, Yi B, Shao Z (2015) An oriented ultrathin catalyst layer derived from high conductive TiO2 nanotube for polymer electrolyte membrane fuel cell. Electrochim Acta 153:361–369CrossRef Zhang C, Yu H, Fu L, Xiao Y, Gao Y, Li Y, Zeng Y, Jia J, Yi B, Shao Z (2015) An oriented ultrathin catalyst layer derived from high conductive TiO2 nanotube for polymer electrolyte membrane fuel cell. Electrochim Acta 153:361–369CrossRef
48.
go back to reference Garcia-Gomez NA, Balderas-Renteria I, Garcia-Gutierrez DI, Mosqueda HA, Sánchez EM (2015) Development of mats composed by TiO2 and carbon dual electrospun nanofibers: a possible anode material in microbial fuel cells. Mater Sci Eng B 193:130–136CrossRef Garcia-Gomez NA, Balderas-Renteria I, Garcia-Gutierrez DI, Mosqueda HA, Sánchez EM (2015) Development of mats composed by TiO2 and carbon dual electrospun nanofibers: a possible anode material in microbial fuel cells. Mater Sci Eng B 193:130–136CrossRef
49.
go back to reference Zhang Y, Mo G, Li X, Zhang W, Zhang J, Ye J, Huang X, Yu C (2011) Graphene-modified electrodes for enhancing the performance of microbial fuel cells. J Power Sour 196:5402–5407CrossRef Zhang Y, Mo G, Li X, Zhang W, Zhang J, Ye J, Huang X, Yu C (2011) Graphene-modified electrodes for enhancing the performance of microbial fuel cells. J Power Sour 196:5402–5407CrossRef
50.
go back to reference Zhao CE, Wang WJ, Sun D, Wang X, Zhang JR, Zhu JJ (2014) Nanostructured graphene/TiO2 hybrids as high-performance anodes for microbial fuel cells. Chem Eur J 20:7091–7097CrossRef Zhao CE, Wang WJ, Sun D, Wang X, Zhang JR, Zhu JJ (2014) Nanostructured graphene/TiO2 hybrids as high-performance anodes for microbial fuel cells. Chem Eur J 20:7091–7097CrossRef
51.
go back to reference Zhou G, Zhao Y, Zu C, Manthiramn A (2015) Free-standing TiO2 nanowire-embedded graphene hybrid membrane for advanced Li/dissolved polysulfide batteries. Nano Energy 12:240–249CrossRef Zhou G, Zhao Y, Zu C, Manthiramn A (2015) Free-standing TiO2 nanowire-embedded graphene hybrid membrane for advanced Li/dissolved polysulfide batteries. Nano Energy 12:240–249CrossRef
Metadata
Title
Organic/TiO2 Nanocomposite Membranes: Recent Developments
Authors
Javier Miguel Ochando-Pulido
José Raúl Corpas-Martínez
Marco Stoller
Antonio Martínez-Férez
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-52739-0_2

Premium Partners