Skip to main content
Top
Published in: Automatic Control and Computer Sciences 4/2020

01-07-2020

Organization of a Fully Self-Checking Structure of a Combinational Device Based on Searching for Groups of Symmetrically Independent Outputs

Authors: D. V. Efanov, V. V. Sapozhnikov, Vl. V. Sapozhnikov

Published in: Automatic Control and Computer Sciences | Issue 4/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new technique is elaborated for building combinational devices with fully self-checking structures, where any kind of single stuck-at faults in internal logical elements is detected. The suggested technique is based on searching for groups of combinational device outputs in which symmetrical errors are impossible (SI groups). When establishing such groups, the developer can choose the implementation options for a self-checking device, each of which assumes the use of a code for failure control with the detection of any unidirectional and asymmetrical errors (identified multiplicities included).
Literature
1.
go back to reference Sogomonyan, E.S. and Slabakov, E.V., Samoproveryaemye ustroistva i otkazoustoichivye sistemy (Self-Checking Devices and Fault-Tolerant Systems), Moscow: Radio i Svyaz’, 1989. Sogomonyan, E.S. and Slabakov, E.V., Samoproveryaemye ustroistva i otkazoustoichivye sistemy (Self-Checking Devices and Fault-Tolerant Systems), Moscow: Radio i Svyaz’, 1989.
2.
go back to reference Parkhomenko, P.P. and Sogomonyan, E.S., Osnovy tekhnicheskoi diagnostiki (optimizatsiya algoritmov diagnostirovaniya, apparaturnye sredstva) (Fundamentals of Technical Diagnostics (Optimization of Diagnostic Algorithms and Hardware)), Moscow: Energoatomizdat, 1981. Parkhomenko, P.P. and Sogomonyan, E.S., Osnovy tekhnicheskoi diagnostiki (optimizatsiya algoritmov diagnostirovaniya, apparaturnye sredstva) (Fundamentals of Technical Diagnostics (Optimization of Diagnostic Algorithms and Hardware)), Moscow: Energoatomizdat, 1981.
3.
go back to reference Lala, P.K., Self-Checking and Fault-Tolerant Digital Design, San Francisco: Morgan Kaufmann Publishers, 2001. Lala, P.K., Self-Checking and Fault-Tolerant Digital Design, San Francisco: Morgan Kaufmann Publishers, 2001.
4.
go back to reference Fujiwara, E., Code Design for Dependable Systems: Theory and Practical Applications, John Wiley & Sons, 2006.CrossRef Fujiwara, E., Code Design for Dependable Systems: Theory and Practical Applications, John Wiley & Sons, 2006.CrossRef
5.
go back to reference Goessel, M., Ocheretny, V., Sogomonyan, E., and Marienfeld, D., New Methods of Concurrent Checking: Edition 1, Dordrecht: Springer Science+Business Media B.V., 2008. Goessel, M., Ocheretny, V., Sogomonyan, E., and Marienfeld, D., New Methods of Concurrent Checking: Edition 1, Dordrecht: Springer Science+Business Media B.V., 2008.
6.
go back to reference Stempkovskii, A.L., Tel’pukhov, D.V., Demeneva, A.I., and Zhukova, T.D., Route of designing functional control schemes for combinational devices, Vestn. Ryazan. Gos. Radiotekh. Univ., 2018, no. 65, pp. 92–98. Stempkovskii, A.L., Tel’pukhov, D.V., Demeneva, A.I., and Zhukova, T.D., Route of designing functional control schemes for combinational devices, Vestn. Ryazan. Gos. Radiotekh. Univ., 2018, no. 65, pp. 92–98.
7.
go back to reference Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Efanov, D.V., Kody Khemminga v sistemakh funktsional’nogo kontrolya logicheskikh ustroistv (Hamming Codes in Systems of Functional Control of Logical Devices), St. Petersburg: Nauka, 2018. Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Efanov, D.V., Kody Khemminga v sistemakh funktsional’nogo kontrolya logicheskikh ustroistv (Hamming Codes in Systems of Functional Control of Logical Devices), St. Petersburg: Nauka, 2018.
8.
go back to reference Nicolaidis, M. and Zorian, Y., On-line testing for VLSI—A compendium of approaches, J. Electron. Test.: Theory Appl., 1998, vol. 12, nos. 1–2, pp. 7–20.CrossRef Nicolaidis, M. and Zorian, Y., On-line testing for VLSI—A compendium of approaches, J. Electron. Test.: Theory Appl., 1998, vol. 12, nos. 1–2, pp. 7–20.CrossRef
9.
go back to reference Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Efanov, D.V., Classification of errors in data vectors of systematic codes, Izv. Vuzov,Priborostr., 2015, vol. 58, no. 5, pp. 333–343. Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Efanov, D.V., Classification of errors in data vectors of systematic codes, Izv. Vuzov,Priborostr., 2015, vol. 58, no. 5, pp. 333–343.
10.
go back to reference Goessel, M., Morozov, A.A., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Investigation of combination self-testing devices having independent and monotone independent outputs, Autom. Remote Control, 1997, vol. 58, no. 2, pp. 299–309.MATH Goessel, M., Morozov, A.A., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Investigation of combination self-testing devices having independent and monotone independent outputs, Autom. Remote Control, 1997, vol. 58, no. 2, pp. 299–309.MATH
11.
go back to reference Saposhnikov, V.V., Morosov, A., Saposhnikov, Vl.V., and Goessel, M., A new design method for self-checking unidirectional combinational circuits, J. Electron. Test.: Theory Appl., 1998, vol. 12, nos. 1–2, pp. 41–53.CrossRef Saposhnikov, V.V., Morosov, A., Saposhnikov, Vl.V., and Goessel, M., A new design method for self-checking unidirectional combinational circuits, J. Electron. Test.: Theory Appl., 1998, vol. 12, nos. 1–2, pp. 41–53.CrossRef
12.
go back to reference Morosow, A., Saposhnikov, V.V., Saposhnikov, Vl.V., and Goessel, M., Self-checking combinational circuits with unidirectionally independent outputs, VLSI Des., 1998, vol. 5, no. 4, pp. 333–345.CrossRef Morosow, A., Saposhnikov, V.V., Saposhnikov, Vl.V., and Goessel, M., Self-checking combinational circuits with unidirectionally independent outputs, VLSI Des., 1998, vol. 5, no. 4, pp. 333–345.CrossRef
13.
go back to reference Goessel, M. and Sogomonyan, E.S., Formation of self-testing and self-checking combinational circuits with weakly independent outputs, Autom. Remote Control, 1992, vol. 53, no. 8, pp. 1264–1272.MATH Goessel, M. and Sogomonyan, E.S., Formation of self-testing and self-checking combinational circuits with weakly independent outputs, Autom. Remote Control, 1992, vol. 53, no. 8, pp. 1264–1272.MATH
14.
go back to reference Sogomonyan, E.S. and Gössel, M., Design of self-testing and on-line fault detection combinational circuits with weakly independent outputs, J. Electron. Test.: Theory Appl., 1993, vol. 4, no. 4, pp. 267–281.CrossRef Sogomonyan, E.S. and Gössel, M., Design of self-testing and on-line fault detection combinational circuits with weakly independent outputs, J. Electron. Test.: Theory Appl., 1993, vol. 4, no. 4, pp. 267–281.CrossRef
15.
go back to reference Busaba, F.Y. and Lala, P.K., Self-checking combinational circuit design for single and unidirectional multibit errors, J. Electron. Test.: Theory Appl., 1994, vol. 5, no. 5, pp. 19–28.CrossRef Busaba, F.Y. and Lala, P.K., Self-checking combinational circuit design for single and unidirectional multibit errors, J. Electron. Test.: Theory Appl., 1994, vol. 5, no. 5, pp. 19–28.CrossRef
16.
go back to reference Matrosova, A.Yu., Levin, I., and Ostanin, S.A., Self-checking synchronous FSM network design with low overhead, VLSI Des., 2000, vol. 11, no. 1, pp. 47–58.CrossRef Matrosova, A.Yu., Levin, I., and Ostanin, S.A., Self-checking synchronous FSM network design with low overhead, VLSI Des., 2000, vol. 11, no. 1, pp. 47–58.CrossRef
17.
go back to reference Matrosova, A., Levin, I., and Ostanin, S., Survivable self-checking sequential circuits, Proceedings of 2001 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT 2001), San Francisco, 2001, pp. 395–402. Matrosova, A., Levin, I., and Ostanin, S., Survivable self-checking sequential circuits, Proceedings of 2001 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT 2001), San Francisco, 2001, pp. 395–402.
18.
go back to reference Matrosova, A. and Mitrofanov, E., Pseudo-exhaustive testing of sequential circuits for multiple stuck-at faults, Proceedings of 14th IEEE East-West Design & Test Symposium (EWDTS’2016), Yerevan, 2016, pp. 533–536. Matrosova, A. and Mitrofanov, E., Pseudo-exhaustive testing of sequential circuits for multiple stuck-at faults, Proceedings of 14th IEEE East-West Design & Test Symposium (EWDTS’2016), Yerevan, 2016, pp. 533–536.
19.
go back to reference Ostanin, S., Self-checking synchronous FSM network design for path delay faults, Proceedings of 15th IEEE East-West Design & Test Symposium (EWDTS’2017), Novi Sad, 2017, pp. 696–699. Ostanin, S., Self-checking synchronous FSM network design for path delay faults, Proceedings of 15th IEEE East-West Design & Test Symposium (EWDTS’2017), Novi Sad, 2017, pp. 696–699.
20.
go back to reference Piestrak, S.J., Design of Self-Testing Checkers for Unidirectional Error Detecting Codes, Wrocław: Oficyna Wydawnicza Politechniki Wrocłavskiej, 1995. Piestrak, S.J., Design of Self-Testing Checkers for Unidirectional Error Detecting Codes, Wrocław: Oficyna Wydawnicza Politechniki Wrocłavskiej, 1995.
21.
go back to reference Ubar, R., Raik, J., and Vierhaus, H.-T., Design and Test Technology for Dependable Systems-on-Chip (Premier Reference Source), New York: IGI Global, 2011.CrossRef Ubar, R., Raik, J., and Vierhaus, H.-T., Design and Test Technology for Dependable Systems-on-Chip (Premier Reference Source), New York: IGI Global, 2011.CrossRef
22.
go back to reference Efanov, D.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Conditions for detecting a logical element fault in a combination device under concurrent checking based on Berger’s Code, Autom. Remote Control, 2017, vol. 78, no. 5, pp. 892–902.CrossRef Efanov, D.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Conditions for detecting a logical element fault in a combination device under concurrent checking based on Berger’s Code, Autom. Remote Control, 2017, vol. 78, no. 5, pp. 892–902.CrossRef
23.
go back to reference Berger, J.M., A note on error detecting codes for asymmetric channels, Inf. Control, 1961, vol. 4, no. 1, pp. 68–73.CrossRef Berger, J.M., A note on error detecting codes for asymmetric channels, Inf. Control, 1961, vol. 4, no. 1, pp. 68–73.CrossRef
24.
go back to reference Das, D. and Touba, N.A., Weight-based codes and their application to concurrent error detection of multilevel circuits, Proceedings of 17th IEEE Test Symposium, 1999, pp. 370–376. Das, D. and Touba, N.A., Weight-based codes and their application to concurrent error detection of multilevel circuits, Proceedings of 17th IEEE Test Symposium, 1999, pp. 370–376.
25.
go back to reference Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Efanov, D.V., Weighted codes with summation for control of logical devices, Elektron. Model., 2014, vol. 36, no. 1, pp. 59–80. Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Efanov, D.V., Weighted codes with summation for control of logical devices, Elektron. Model., 2014, vol. 36, no. 1, pp. 59–80.
26.
go back to reference Sapozhnikov, V., Sapozhnikov, Vl., Efanov, D., and Nikitin, D., Combinational circuits checking on the base of sum codes with one weighted data bit, Proceedings of 12th IEEE East-West Design & Test Symposium (EWDTS’2014), Kyiv, 2014, pp. 126–136. Sapozhnikov, V., Sapozhnikov, Vl., Efanov, D., and Nikitin, D., Combinational circuits checking on the base of sum codes with one weighted data bit, Proceedings of 12th IEEE East-West Design & Test Symposium (EWDTS’2014), Kyiv, 2014, pp. 126–136.
27.
go back to reference Freiman, C.V., Optimal error detection codes for completely asymmetric binary channels, Inf. Control, 1962, vol. 5, no. 1, pp. 64–71.MathSciNetCrossRef Freiman, C.V., Optimal error detection codes for completely asymmetric binary channels, Inf. Control, 1962, vol. 5, no. 1, pp. 64–71.MathSciNetCrossRef
28.
go back to reference Efanov, D.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Sum codes with fixed values of multiplicities for detectable unidirectional and asymmetrical errors for technical diagnostics of discrete systems, Autom. Remote Control, 2019, vol. 80, no. 6, pp. 1082–1097.MathSciNetCrossRef Efanov, D.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Sum codes with fixed values of multiplicities for detectable unidirectional and asymmetrical errors for technical diagnostics of discrete systems, Autom. Remote Control, 2019, vol. 80, no. 6, pp. 1082–1097.MathSciNetCrossRef
29.
go back to reference Mitra, S. and McCluskey, E.J., Which concurrent error detection scheme to choose?, Proceedings of International Test Conference, 2000, pp. 985–994. Mitra, S. and McCluskey, E.J., Which concurrent error detection scheme to choose?, Proceedings of International Test Conference, 2000, pp. 985–994.
30.
go back to reference Ghosh, S., Basu, S., and Touba, N.A., Synthesis of low power CED circuits based on parity codes, Proceedings of 23rd IEEE VLSI Test Symposium (VTS’05), 2005, pp. 315–320. Ghosh, S., Basu, S., and Touba, N.A., Synthesis of low power CED circuits based on parity codes, Proceedings of 23rd IEEE VLSI Test Symposium (VTS’05), 2005, pp. 315–320.
31.
go back to reference Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V., and Dmitriev, V.V., New structures of the concurrent error detection systems for logic circuits, Autom. Remote Control, 2017, vol. 78, no. 2, pp. 300–313.MathSciNetCrossRef Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V., and Dmitriev, V.V., New structures of the concurrent error detection systems for logic circuits, Autom. Remote Control, 2017, vol. 78, no. 2, pp. 300–313.MathSciNetCrossRef
32.
go back to reference Borecký, J., Kohlík, M., and Kubátová, H., Parity driven reconfigurable duplex system, Microprocess. Microsyst., 2017, vol. 52, pp. 251–260.CrossRef Borecký, J., Kohlík, M., and Kubátová, H., Parity driven reconfigurable duplex system, Microprocess. Microsyst., 2017, vol. 52, pp. 251–260.CrossRef
33.
go back to reference Sapozhnikov, V., Sapozhnikov, Vl., and Efanov, D., Search algorithm for fully tested elements in combinational circuits, controlled on the basis of Berger codes, Proceedings of 15th IEEE East-West Design & Test Symposium (EWDTS’2017), Novi Sad, 2017, pp.99–108. Sapozhnikov, V., Sapozhnikov, Vl., and Efanov, D., Search algorithm for fully tested elements in combinational circuits, controlled on the basis of Berger codes, Proceedings of 15th IEEE East-West Design & Test Symposium (EWDTS’2017), Novi Sad, 2017, pp.99–108.
Metadata
Title
Organization of a Fully Self-Checking Structure of a Combinational Device Based on Searching for Groups of Symmetrically Independent Outputs
Authors
D. V. Efanov
V. V. Sapozhnikov
Vl. V. Sapozhnikov
Publication date
01-07-2020
Publisher
Pleiades Publishing
Published in
Automatic Control and Computer Sciences / Issue 4/2020
Print ISSN: 0146-4116
Electronic ISSN: 1558-108X
DOI
https://doi.org/10.3103/S0146411620040045

Other articles of this Issue 4/2020

Automatic Control and Computer Sciences 4/2020 Go to the issue