Skip to main content
Top

2018 | OriginalPaper | Chapter

2. Oriented-Attachment Nanocrystals in Fuel Cells

Authors : Weidong He, Kechun Wen, Yinghua Niu

Published in: Nanocrystals from Oriented-Attachment for Energy Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fuel cells are devices that convert chemical energy to electricity through reaction of fuels with oxygen. Different from batteries that are defined as storage energy devices, fuel cells can continuously generate electricity as long as fuels are supplied sufficiently [1].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. O’hayre, S.-W. Cha, F.B. Prinz, W. Colella, Fuel cell fundamentals (Wiley, New York, 2016) R. O’hayre, S.-W. Cha, F.B. Prinz, W. Colella,  Fuel cell fundamentals (Wiley, New York, 2016)
2.
go back to reference A.J. Appleby, Regenerative fuel cells for space applications. J. Power Sources 22, 377–385 (1988) A.J. Appleby, Regenerative fuel cells for space applications. J. Power Sources 22, 377–385 (1988)
3.
go back to reference W.R. Grove, On voltaic series and the combination of gases by platinum. Lond. Edinb. Philos. Mag. J. Sci. 14, 127–130 (1839) W.R. Grove, On voltaic series and the combination of gases by platinum. Lond. Edinb. Philos. Mag. J. Sci. 14, 127–130 (1839)
4.
go back to reference W.R. Grove, On a Gaseous Voltaic Battery. Philos. Mag. Series 3, 21, 417–420 (1842) W.R. Grove, On a Gaseous Voltaic Battery. Philos. Mag. Series 3, 21, 417–420 (1842)
5.
go back to reference R.E. Billings, The hydrogen world view. (International Academy of Science, 1991) R.E. Billings, The hydrogen world view. (International Academy of Science, 1991)
6.
go back to reference L.J. Blomen, M.N. Mugerwa, Fuel cell systems. (Springer Science & Business Media, 2013) L.J. Blomen, M.N. Mugerwa,  Fuel cell systems. (Springer Science & Business Media, 2013)
7.
go back to reference R.R. Prabhu, Stationary Fuel Cells Market size to reach 350,000 Shipments by 2022. (Renew India Campaign, 2013) R.R. Prabhu, Stationary Fuel Cells Market size to reach 350,000 Shipments by 2022. (Renew India Campaign, 2013)
8.
go back to reference S. Basu, J.A. Roberts, S.N. Azam-Ali, S. Mayes, Bambara groundnut[M]// Pulses, Sugar and Tuber Crops, (Springer, Berlin, Heidelberg, 2007), pp. 159-173 S. Basu, J.A. Roberts, S.N. Azam-Ali, S. Mayes, Bambara groundnut[M]// Pulses, Sugar and Tuber Crops, (Springer, Berlin, Heidelberg, 2007), pp. 159-173
9.
go back to reference Basu R N. Materials for solid oxide fuel cells[M]//Recent trends in fuel cell science and technology. (Springer New York, 2007), pp. 286-331 Basu R N. Materials for solid oxide fuel cells[M]//Recent trends in fuel cell science and technology. (Springer New York, 2007), pp. 286-331
10.
go back to reference J.H. Wee, Applications of proton exchange membrane fuel cell systems. Renew. Sustain. Energy Rev. 11, 1720–1738 (2007) J.H. Wee, Applications of proton exchange membrane fuel cell systems. Renew. Sustain. Energy Rev. 11, 1720–1738 (2007)
11.
go back to reference Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energy 88, 981–1007 (2011) Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energy 88, 981–1007 (2011)
12.
go back to reference G.F. McLean, T. Niet, S. Prince-Richard, N. Djilali, An assessment of alkaline fuel cell technology. Int. J. Hydrogen Energy 27, 507–526 (2002) G.F. McLean, T. Niet, S. Prince-Richard, N. Djilali, An assessment of alkaline fuel cell technology. Int. J. Hydrogen Energy 27, 507–526 (2002)
13.
go back to reference G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review. J. Membr. Sci. 377, 1–35 (2011) G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review. J. Membr. Sci. 377, 1–35 (2011)
14.
go back to reference X. Ren, P. Zelenay, S. Thomas, J. Davey, S. Gottesfeld, Recent advances in direct methanol fuel cells at Los Alamos National Laboratory. J. Power Sources 86, 111–116 (2000) X. Ren, P. Zelenay, S. Thomas, J. Davey, S. Gottesfeld, Recent advances in direct methanol fuel cells at Los Alamos National Laboratory. J. Power Sources 86, 111–116 (2000)
15.
go back to reference V. Das, S. Padmanaban, K. Venkitusamy, R. Selvamuthukumaran, F. Blaabjerg, P. Siano, Recent advances and challenges of fuel cell based power system architectures and control–A review. Renew. Sustain. Energy Rev. 73, 10–18 (2017) V. Das, S. Padmanaban, K. Venkitusamy, R. Selvamuthukumaran, F. Blaabjerg, P. Siano, Recent advances and challenges of fuel cell based power system architectures and control–A review. Renew. Sustain. Energy Rev. 73, 10–18 (2017)
16.
go back to reference Bagotsky V. S. Fuel cells: problems and solutions. (John Wiley & Sons, 2012) Bagotsky V. S. Fuel cells: problems and solutions. (John Wiley & Sons, 2012)
17.
go back to reference C.G. Lee, Molten Carbonate Fuel Cells, in Fuel Cells: Selected Entries from the Encyclopedia of Sustainability Science and Technology, ed. by K.D. Kreuer (Springer, New York, New York, NY, 2013), pp. 217–248 C.G. Lee, Molten Carbonate Fuel Cells, in Fuel Cells: Selected Entries from the Encyclopedia of Sustainability Science and Technology, ed. by K.D. Kreuer (Springer, New York, New York, NY, 2013), pp. 217–248
18.
go back to reference A.L. Dicks, Molten carbonate fuel cells. Curr. Opin. Solid State Mater. Sci. 8, 379–383 (2004) A.L. Dicks, Molten carbonate fuel cells. Curr. Opin. Solid State Mater. Sci. 8, 379–383 (2004)
19.
go back to reference O. Yamamoto, Solid oxide fuel cells: fundamental aspects and prospects. Electrochim. Acta 45, 2423–2435 (2000) O. Yamamoto, Solid oxide fuel cells: fundamental aspects and prospects. Electrochim. Acta 45, 2423–2435 (2000)
20.
go back to reference E.D. Wachsman, K.T. Lee, Lowering the temperature of solid oxide fuel cells. Science 334, 935–939 (2011) E.D. Wachsman, K.T. Lee, Lowering the temperature of solid oxide fuel cells. Science 334, 935–939 (2011)
21.
go back to reference S. Sharma, B.G. Pollet, Support materials for PEMFC and DMFC electrocatalysts—a review. J. Power Sources 208, 96–119 (2012) S. Sharma, B.G. Pollet, Support materials for PEMFC and DMFC electrocatalysts—a review. J. Power Sources 208, 96–119 (2012)
22.
go back to reference R.F. Mann, J.C. Amphlett, M.A.I. Hooper, H.M. Jensen, B.A. Peppley, P.R. Roberge, Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. J. Power Sources 86, 173–180 (2000) R.F. Mann, J.C. Amphlett, M.A.I. Hooper, H.M. Jensen, B.A. Peppley, P.R. Roberge, Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. J. Power Sources 86, 173–180 (2000)
23.
go back to reference S.S. Munjewar, S.B. Thombre, R.K. Mallick, Approaches to overcome the barrier issues of passive direct methanol fuel cell–Review. Renew. Sustain. Energy Rev. 67, 1087–1104 (2017) S.S. Munjewar, S.B. Thombre, R.K. Mallick, Approaches to overcome the barrier issues of passive direct methanol fuel cell–Review. Renew. Sustain. Energy Rev. 67, 1087–1104 (2017)
24.
go back to reference H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005) H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005)
25.
go back to reference X. Zhou, Y. Gan, J. Du, D. Tian, R. Zhang, C. Yang, Z. Dai, A review of hollow Pt-based nanocatalysts applied in proton exchange membrane fuel cells. J. Power Sources 232, 310–322 (2013) X. Zhou, Y. Gan, J. Du, D. Tian, R. Zhang, C. Yang, Z. Dai, A review of hollow Pt-based nanocatalysts applied in proton exchange membrane fuel cells. J. Power Sources 232, 310–322 (2013)
26.
go back to reference C. Bianchini, P.K. Shen, Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 109, 4183–4206 (2009) C. Bianchini, P.K. Shen, Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 109, 4183–4206 (2009)
27.
go back to reference C. Wang, H. Daimon, T. Onodera, T. Koda, S. Sun, A General Approach to the Size‐and Shape‐Controlled Synthesis of Platinum Nanoparticles and Their Catalytic Reduction of Oxygen. Angew. Chem. Int. Ed. 47, 3588–3591 (2008) C. Wang, H. Daimon, T. Onodera, T. Koda, S. Sun, A General Approach to the Size‐and Shape‐Controlled Synthesis of Platinum Nanoparticles and Their Catalytic Reduction of Oxygen. Angew. Chem. Int. Ed. 47, 3588–3591 (2008)
28.
go back to reference Y.B. He, G.R. Li, Z.L. Wang, Y.N. Ou, Y.X. Tong, Pt nanorods aggregates with enhanced electrocatalytic activity toward methanol oxidation. J. Phys. Chem. C 114, 19175–19181 (2010) Y.B. He, G.R. Li, Z.L. Wang, Y.N. Ou, Y.X. Tong, Pt nanorods aggregates with enhanced electrocatalytic activity toward methanol oxidation. J. Phys. Chem. C 114, 19175–19181 (2010)
29.
go back to reference S. Sun, F. Jaouen, J.P. Dodelet, Controlled growth of Pt nanowires on carbon nanospheres and their enhanced performance as electrocatalysts in PEM fuel cells. Adv. Mater. 20, 3900–3904 (2008) S. Sun, F. Jaouen, J.P. Dodelet, Controlled growth of Pt nanowires on carbon nanospheres and their enhanced performance as electrocatalysts in PEM fuel cells. Adv. Mater. 20, 3900–3904 (2008)
30.
go back to reference B.Y. Xia, H.B. Wu, Y. Yan, X.W. Lou, X. Wang, Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J. Am. Chem. Soc. 135, 9480–9485 (2013) B.Y. Xia, H.B. Wu, Y. Yan, X.W. Lou, X. Wang, Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J. Am. Chem. Soc. 135, 9480–9485 (2013)
31.
go back to reference C. Wang, H. Daimon, Y. Lee, J. Kim, S. Sun, Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. J. Am. Chem. Soc. 129, 6974–6975 (2007) C. Wang, H. Daimon, Y. Lee, J. Kim, S. Sun, Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. J. Am. Chem. Soc. 129, 6974–6975 (2007)
32.
go back to reference J.W. Hong, S.W. Kang, B.S. Choi, D. Kim, S.B. Lee, S.W. Han, Controlled synthesis of Pd–Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction. ACS Nano 6, 2410–2419 (2012) J.W. Hong, S.W. Kang, B.S. Choi, D. Kim, S.B. Lee, S.W. Han, Controlled synthesis of Pd–Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction. ACS Nano 6, 2410–2419 (2012)
33.
go back to reference S. Lu, K. Eid, D. Ge, J. Guo, L. Wang, H. Wang, H. Gu, One-pot synthesis of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction. Nanoscale 9, 1033–1039 (2017) S. Lu, K. Eid, D. Ge, J. Guo, L. Wang, H. Wang, H. Gu, One-pot synthesis of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction. Nanoscale 9, 1033–1039 (2017)
34.
go back to reference Y. Yu, W. Yang, X. Sun, W. Zhu, X.Z. Li, D.J. Sellmyer, S. Sun, Monodisperse MPt (M= Fe, Co, Ni, Cu, Zn) nanoparticles prepared from a facile oleylamine reduction of metal salts. Nano Lett. 14, 2778–2782 (2014) Y. Yu, W. Yang, X. Sun, W. Zhu, X.Z. Li, D.J. Sellmyer, S. Sun, Monodisperse MPt (M= Fe, Co, Ni, Cu, Zn) nanoparticles prepared from a facile oleylamine reduction of metal salts. Nano Lett. 14, 2778–2782 (2014)
35.
go back to reference V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J. Mayrhofer, C.A. Lucas, G. Wang, P.N. Ross, N.M. Markovic, Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 6, 241–247 (2007) V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J. Mayrhofer, C.A. Lucas, G. Wang, P.N. Ross, N.M. Markovic, Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 6, 241–247 (2007)
36.
go back to reference T. Maiyalagan, K. Scott, Performance of carbon nanofiber supported Pd–Ni catalysts for electro-oxidation of ethanol in alkaline medium. J. Power Sources 195, 5246–5251 (2010) T. Maiyalagan, K. Scott, Performance of carbon nanofiber supported Pd–Ni catalysts for electro-oxidation of ethanol in alkaline medium. J. Power Sources 195, 5246–5251 (2010)
37.
go back to reference Z.Y. Shih, C.W. Wang, G. Xu, H.T. Chang, Porous palladium copper nanoparticles for the electrocatalytic oxidation of methanol in direct methanol fuel cells. J. Mater. Chem. A 1, 4773 (2013) Z.Y. Shih, C.W. Wang, G. Xu, H.T. Chang, Porous palladium copper nanoparticles for the electrocatalytic oxidation of methanol in direct methanol fuel cells. J. Mater. Chem. A 1, 4773 (2013)
38.
go back to reference X. Yu, D. Wang, Q. Peng, Y. Li, Pt-M (M= Cu, Co, Ni, Fe) nanocrystals: from small nanoparticles to wormlike nanowires by oriented attachment. Chemistry 19, 233–239 (2013) X. Yu, D. Wang, Q. Peng, Y. Li, Pt-M (M= Cu, Co, Ni, Fe) nanocrystals: from small nanoparticles to wormlike nanowires by oriented attachment. Chemistry 19, 233–239 (2013)
39.
go back to reference N.V. Long, M. Ohtaki, M. Uchida, R. Jalem, H. Hirata, N.D. Chien, M. Nogami, Synthesis and characterization of polyhedral Pt nanoparticles: Their catalytic property, surface attachment, self-aggregation and assembly. J. Colloid Interface Sci. 359, 339–350 (2011) N.V. Long, M. Ohtaki, M. Uchida, R. Jalem, H. Hirata, N.D. Chien, M. Nogami, Synthesis and characterization of polyhedral Pt nanoparticles: Their catalytic property, surface attachment, self-aggregation and assembly. J. Colloid Interface Sci. 359, 339–350 (2011)
40.
go back to reference H.G. Liao, L. Cui, S. Whitelam, H. Zheng, Real-time imaging of Pt3Fe nanorod growth in solution. Science 336, 1011–1014 (2012) H.G. Liao, L. Cui, S. Whitelam, H. Zheng, Real-time imaging of Pt3Fe nanorod growth in solution. Science 336, 1011–1014 (2012)
41.
go back to reference L. Huang, Y. Han, X. Zhang, Y. Fang, S. Dong, One-step synthesis of ultrathin PtxPb nerve-like nanowires as robust catalysts for enhanced methanol electrooxidation. Nanoscale 9, 201–207 (2017) L. Huang, Y. Han, X. Zhang, Y. Fang, S. Dong, One-step synthesis of ultrathin PtxPb nerve-like nanowires as robust catalysts for enhanced methanol electrooxidation. Nanoscale 9, 201–207 (2017)
42.
go back to reference S. Lu, K. Eid, M. Lin, L. Wang, H. Wang, H. Gu, Hydrogen gas-assisted synthesis of worm-like PtMo wavy nanowires as efficient catalysts for the methanol oxidation reaction. J. Mater. Chem. A 4, 10508–10513 (2016) S. Lu, K. Eid, M. Lin, L. Wang, H. Wang, H. Gu, Hydrogen gas-assisted synthesis of worm-like PtMo wavy nanowires as efficient catalysts for the methanol oxidation reaction. J. Mater. Chem. A 4, 10508–10513 (2016)
43.
go back to reference Z. Peng, H. You, H. Yang, Composition-dependent formation of platinum silver nanowires. ACS Nano 4, 1501–1510 (2010) Z. Peng, H. You, H. Yang, Composition-dependent formation of platinum silver nanowires. ACS Nano 4, 1501–1510 (2010)
44.
go back to reference L. Dong, L. Li, X. Yu, P. Lü, J. Zhao, Synthesis and electrocatalytic properties of Pt–Cu worm-like nanowires. Catal. Lett. 147, 2127–2133 (2017) L. Dong, L. Li, X. Yu, P. Lü, J. Zhao, Synthesis and electrocatalytic properties of Pt–Cu worm-like nanowires. Catal. Lett. 147, 2127–2133 (2017)
45.
go back to reference L. Shi, A. Wang, T. Zhang, B. Zhang, D. Su, H. Li, Y. Song, One-step synthesis of Au–Pd alloy nanodendrites and their catalytic activity. J. Phys. Chem. C 117, 12526–12536 (2013) L. Shi, A. Wang, T. Zhang, B. Zhang, D. Su, H. Li, Y. Song, One-step synthesis of Au–Pd alloy nanodendrites and their catalytic activity. J. Phys. Chem. C 117, 12526–12536 (2013)
46.
go back to reference L. Yang, C. Hu, J. Wang, Z. Yang, Y. Guo, Z. Bai, K. Wang, Facile synthesis of hollow palladium/copper alloyed nanocubes for formic acid oxidation. Chem. Commun. 47, 8581–8583 (2011) L. Yang, C. Hu, J. Wang, Z. Yang, Y. Guo, Z. Bai, K. Wang, Facile synthesis of hollow palladium/copper alloyed nanocubes for formic acid oxidation. Chem. Commun. 47, 8581–8583 (2011)
47.
go back to reference P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, A. Nilsson, Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010) P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, A. Nilsson, Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010)
48.
go back to reference L. Grabow, Y. Xu, M. Mavrikakis, Lattice strain effects on CO oxidation on Pt (111). Phys. Chem. Chem. Phys. 8, 3369–3374 (2006) L. Grabow, Y. Xu, M. Mavrikakis, Lattice strain effects on CO oxidation on Pt (111). Phys. Chem. Chem. Phys. 8, 3369–3374 (2006)
49.
go back to reference L. Gan, R. Yu, J. Luo, Z. Cheng, J. Zhu, Lattice strain distributions in individual dealloyed Pt–Fe catalyst nanoparticles. J. Phys. Chem. Lett. 3, 934–938 (2012) L. Gan, R. Yu, J. Luo, Z. Cheng, J. Zhu, Lattice strain distributions in individual dealloyed Pt–Fe catalyst nanoparticles. J. Phys. Chem. Lett. 3, 934–938 (2012)
50.
go back to reference Y. Suo, L. Zhuang, J. Lu, First‐principles considerations in the design of Pd‐Alloy catalysts for oxygen reduction. Angew. Chem. Int. Edit. 46, 2862–2864 (2007) Y. Suo, L. Zhuang, J. Lu, First‐principles considerations in the design of Pd‐Alloy catalysts for oxygen reduction. Angew. Chem. Int. Edit. 46, 2862–2864 (2007)
Metadata
Title
Oriented-Attachment Nanocrystals in Fuel Cells
Authors
Weidong He
Kechun Wen
Yinghua Niu
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-72432-4_2