Skip to main content
Top

2018 | OriginalPaper | Chapter

Osmotic Power Generation

Author : Tzahi Y. Cath

Published in: Power Stations Using Locally Available Energy Sources

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Excerpt

Production of energy for daily use involves conversion of energy from one form to another. Successful power generation techniques are those that make use of inexpensive energy sources and that utilize efficient conversions. Chemical potential is a unique source of energy that under certain conditions can be converted to useful energy. One example is the conversion of salinity gradient to pressure and from pressure to kinetic energy in a turbo-generator [1, 2]. …

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Loeb S, Honda T, Reali M (1990) Comparative mechanical efficiency of several plant configurations using a pressure-retarded osmosis energy converter. J Membr Sci 51:323–335CrossRef Loeb S, Honda T, Reali M (1990) Comparative mechanical efficiency of several plant configurations using a pressure-retarded osmosis energy converter. J Membr Sci 51:323–335CrossRef
2.
go back to reference Loeb S (1998) Energy production at the Dead Sea by pressure-retarded osmosis: challenge or chimera? Desalination 120:247–262CrossRef Loeb S (1998) Energy production at the Dead Sea by pressure-retarded osmosis: challenge or chimera? Desalination 120:247–262CrossRef
3.
go back to reference Loeb S (1976) Production of energy from concentrated brines by pressure-retarded osmosis: I. Preliminary technical and economic correlations. J Membr Sci 1:49CrossRef Loeb S (1976) Production of energy from concentrated brines by pressure-retarded osmosis: I. Preliminary technical and economic correlations. J Membr Sci 1:49CrossRef
4.
go back to reference Loeb S, Hassen Fv, Shahaf D (1976) Production of energy from concentrated brines by pressure-retarded osmosis: II. Experimental results and projected energy costs. J Membr Sci 1:249–269CrossRef Loeb S, Hassen Fv, Shahaf D (1976) Production of energy from concentrated brines by pressure-retarded osmosis: II. Experimental results and projected energy costs. J Membr Sci 1:249–269CrossRef
5.
go back to reference Loeb S (1974) Osmotic power plants. Science 189:350 Loeb S (1974) Osmotic power plants. Science 189:350
6.
go back to reference Cath TY, Childress AE, Elimelech M (2006) Forward osmosis: principles, applications, and recent developments. J Membr Sci 281:70–87CrossRef Cath TY, Childress AE, Elimelech M (2006) Forward osmosis: principles, applications, and recent developments. J Membr Sci 281:70–87CrossRef
8.
go back to reference Norman RS (1974) Water salination: a source of energy. Science 186:350–352CrossRef Norman RS (1974) Water salination: a source of energy. Science 186:350–352CrossRef
9.
go back to reference Aaberg RJ (2003) Osmotic power. A new and powerful renewable energy source? Refocus 4:48–50CrossRef Aaberg RJ (2003) Osmotic power. A new and powerful renewable energy source? Refocus 4:48–50CrossRef
10.
go back to reference Manth T, Gabor M, Oklejas E (2003) Minimizing RO energy consumption under variable conditions of operation. Desalination 157:9–21CrossRef Manth T, Gabor M, Oklejas E (2003) Minimizing RO energy consumption under variable conditions of operation. Desalination 157:9–21CrossRef
11.
go back to reference Peñate B, García-Rodríguez L (2011) Energy optimisation of existing SWRO (seawater reverse osmosis) plants with ERT (energy recovery turbines): technical and thermoeconomic assessment. Energy 36:613–626CrossRef Peñate B, García-Rodríguez L (2011) Energy optimisation of existing SWRO (seawater reverse osmosis) plants with ERT (energy recovery turbines): technical and thermoeconomic assessment. Energy 36:613–626CrossRef
12.
go back to reference Stover RL (2007) Seawater reverse osmosis with isobaric energy recovery devices. Desalination 203:168–175CrossRef Stover RL (2007) Seawater reverse osmosis with isobaric energy recovery devices. Desalination 203:168–175CrossRef
13.
go back to reference Mulder M (2001) Basic principles of membrane technology, 2nd edn. Kluwer, Dordrecht. ISBN 9780792342472 Mulder M (2001) Basic principles of membrane technology, 2nd edn. Kluwer, Dordrecht. ISBN 9780792342472
14.
go back to reference Hancock NT, Cath TY (2009) Solute coupled diffusion in osmotically driven membrane processes. Environ Sci Technol 43:6769–6775CrossRef Hancock NT, Cath TY (2009) Solute coupled diffusion in osmotically driven membrane processes. Environ Sci Technol 43:6769–6775CrossRef
15.
go back to reference Hancock NT, Phillip WA, Elimelech M, Cath TY (2011) Bidirectional permeation of electrolytes in osmotically driven membrane processes. Environ Sci Technol 45:10642–10651CrossRef Hancock NT, Phillip WA, Elimelech M, Cath TY (2011) Bidirectional permeation of electrolytes in osmotically driven membrane processes. Environ Sci Technol 45:10642–10651CrossRef
16.
go back to reference Achilli A, Cath TY, Childress AE (2009) Power generation with pressure retarded osmosis: an experimental and theoretical investigation. J Membr Sci 343:42–52CrossRef Achilli A, Cath TY, Childress AE (2009) Power generation with pressure retarded osmosis: an experimental and theoretical investigation. J Membr Sci 343:42–52CrossRef
17.
go back to reference Mehta GD, Loeb S (1978) Internal polarization in the porous substructure of a semi-permeable membrane under pressure-retarded osmosis. J Membr Sci 4:261CrossRef Mehta GD, Loeb S (1978) Internal polarization in the porous substructure of a semi-permeable membrane under pressure-retarded osmosis. J Membr Sci 4:261CrossRef
18.
go back to reference Lee KL, Baker RW, Lonsdale HK (1981) Membranes for power generation by pressure-retarded osmosis. J Membr Sci 8:141–171CrossRef Lee KL, Baker RW, Lonsdale HK (1981) Membranes for power generation by pressure-retarded osmosis. J Membr Sci 8:141–171CrossRef
19.
go back to reference Achilli A, Childress AE (2010) Pressure retarded osmosis: from the vision of Sidney Loeb to the first prototype installation – review. Desalination 261:205–211CrossRef Achilli A, Childress AE (2010) Pressure retarded osmosis: from the vision of Sidney Loeb to the first prototype installation – review. Desalination 261:205–211CrossRef
20.
go back to reference Li X, He T, Dou P, Zhao S (2017) Forward osmosis and forward osmosis membranes. A book chapter in: Reference module in chemistry, molecular sciences and chemical engineering. Elsevier, Amsterdam, The Netherlands. ISBN 978-0-12-409547-2 Li X, He T, Dou P, Zhao S (2017) Forward osmosis and forward osmosis membranes. A book chapter in: Reference module in chemistry, molecular sciences and chemical engineering. Elsevier, Amsterdam, The Netherlands. ISBN 978-0-12-409547-2
21.
go back to reference Yip NY, Tiraferri A, Phillip WA, Schiffman JD, Hoover LA, Kim YC, Elimelech M (2011) Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. Environ Sci Technol 45:4360–4369CrossRef Yip NY, Tiraferri A, Phillip WA, Schiffman JD, Hoover LA, Kim YC, Elimelech M (2011) Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. Environ Sci Technol 45:4360–4369CrossRef
22.
go back to reference Straub AP, Deshmukh A, Elimelech M (2016) Pressure-retarded osmosis for power generation from salinity gradients: is it viable? Energ Environ Sci 9:31–48CrossRef Straub AP, Deshmukh A, Elimelech M (2016) Pressure-retarded osmosis for power generation from salinity gradients: is it viable? Energ Environ Sci 9:31–48CrossRef
23.
go back to reference Hickenbottom KL, Vanneste J, Elimelech M, Cath TY (2016) Assessing the current state of commercially available membranes and spacers for energy production with pressure retarded osmosis. Desalination 389:108–118CrossRef Hickenbottom KL, Vanneste J, Elimelech M, Cath TY (2016) Assessing the current state of commercially available membranes and spacers for energy production with pressure retarded osmosis. Desalination 389:108–118CrossRef
24.
go back to reference Arena JT, McCloskey B, Freeman BD, McCutcheon JR (2011) Surface modification of thin film composite membrane support layers with polydopamine: enabling use of reverse osmosis membranes in pressure retarded osmosis. J Membr Sci 375:55–62CrossRef Arena JT, McCloskey B, Freeman BD, McCutcheon JR (2011) Surface modification of thin film composite membrane support layers with polydopamine: enabling use of reverse osmosis membranes in pressure retarded osmosis. J Membr Sci 375:55–62CrossRef
25.
go back to reference McCutcheon JR, Elimelech M (2006) Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. J Membr Sci 284:237–247CrossRef McCutcheon JR, Elimelech M (2006) Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. J Membr Sci 284:237–247CrossRef
26.
go back to reference Straub AP, Osuji CO, Cath TY, Elimelech M (2015) Selectivity and mass transfer limitations in pressure-retarded osmosis at high concentrations and increased operating pressures. Environ Sci Technol 49:12551–12559CrossRef Straub AP, Osuji CO, Cath TY, Elimelech M (2015) Selectivity and mass transfer limitations in pressure-retarded osmosis at high concentrations and increased operating pressures. Environ Sci Technol 49:12551–12559CrossRef
27.
go back to reference Hickenbottom KL, Vanneste J, Cath TY (2016) Assessment of alternative draw solutions for optimized performance of a closed-loop osmotic heat engine. J Membr Sci 504:162–175CrossRef Hickenbottom KL, Vanneste J, Cath TY (2016) Assessment of alternative draw solutions for optimized performance of a closed-loop osmotic heat engine. J Membr Sci 504:162–175CrossRef
28.
go back to reference Reali M (1980) Closed cycle osmotic power plants for electric power production. Energy 5:325–329CrossRef Reali M (1980) Closed cycle osmotic power plants for electric power production. Energy 5:325–329CrossRef
29.
go back to reference McGinnis RL, McCutcheon JR, Elimelech M (2007) A novel ammonia–carbon dioxide osmotic heat engine for power generation. J Membr Sci 305:13–19CrossRef McGinnis RL, McCutcheon JR, Elimelech M (2007) A novel ammonia–carbon dioxide osmotic heat engine for power generation. J Membr Sci 305:13–19CrossRef
30.
go back to reference McCutcheon JR, McGinnis RL, Elimelech M (2005) A novel ammonia–carbon dioxide forward (direct) osmosis desalination process. Desalination 174:1–11CrossRef McCutcheon JR, McGinnis RL, Elimelech M (2005) A novel ammonia–carbon dioxide forward (direct) osmosis desalination process. Desalination 174:1–11CrossRef
33.
go back to reference Post JW, Hamelers HVM, Buisman CJN (2008) Energy recovery from controlled mixing salt and fresh water with a reverse Electrodialysis system. Environ Sci Technol 42:5785–5790CrossRef Post JW, Hamelers HVM, Buisman CJN (2008) Energy recovery from controlled mixing salt and fresh water with a reverse Electrodialysis system. Environ Sci Technol 42:5785–5790CrossRef
34.
go back to reference Hickenbottom KL, Vanneste J, Cath TY (2015) Assessment of alternative draw solutions for optimized performance of a closed-loop osmotic heat engine. J Membr Sci 504:162–175CrossRef Hickenbottom KL, Vanneste J, Cath TY (2015) Assessment of alternative draw solutions for optimized performance of a closed-loop osmotic heat engine. J Membr Sci 504:162–175CrossRef
Metadata
Title
Osmotic Power Generation
Author
Tzahi Y. Cath
Copyright Year
2018
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-7510-5_1029