Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

5. Other Applications

Authors : Zhuohao Xiao, Shuangchen Ruan, Ling Bing Kong, Wenxiu Que, Kun Zhou, Yin Liu, Tianshu Zhang

Published in: MXenes and MXenes-based Composites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Besides their applications in energy storage and conversion, MXenes and MXene-based hybrids and composites have also found a wide range of applications in other fields, such as environmental protection, chemical sensors, biosensors, microwave absorbers, EMI shielding and transparent thin films (electrodes or conductors), as well as other applications that are not covered in this book [1–9].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Akkus, U.O., Balci, E., Berber, S.: Mo2TiC2O2 MXene-based nanoscale pressure sensor. Phys. E-Low-Dimen. Syst. Nanostruct. 116, 113762 (2020)CrossRef Akkus, U.O., Balci, E., Berber, S.: Mo2TiC2O2 MXene-based nanoscale pressure sensor. Phys. E-Low-Dimen. Syst. Nanostruct. 116, 113762 (2020)CrossRef
2.
go back to reference Blanco, E., Rosenkranz, A., Espinoza-Gonzalez, R., Fuenzalida, V.M., Zhang, Z.Y., Suarez, S., et al.: Catalytic performance of 2D-Mxene nano-sheets for the hydrodeoxygenation (HDO) of lignin-derived model compounds. Catal. Commun. 133, 105833 (2020)CrossRef Blanco, E., Rosenkranz, A., Espinoza-Gonzalez, R., Fuenzalida, V.M., Zhang, Z.Y., Suarez, S., et al.: Catalytic performance of 2D-Mxene nano-sheets for the hydrodeoxygenation (HDO) of lignin-derived model compounds. Catal. Commun. 133, 105833 (2020)CrossRef
3.
go back to reference Gao, Y.J., Cao, Y.Y., Zhuo, H., Sun, X., Gu, Y.B., Zhuang, G.L., et al.: Mo2TiC2 MXene: a promising catalyst for electrocatalytic ammonia synthesis. Catal. Today 339, 120–126 (2020)CrossRef Gao, Y.J., Cao, Y.Y., Zhuo, H., Sun, X., Gu, Y.B., Zhuang, G.L., et al.: Mo2TiC2 MXene: a promising catalyst for electrocatalytic ammonia synthesis. Catal. Today 339, 120–126 (2020)CrossRef
4.
go back to reference Liu, T., Liu, X.Y., Graham, N., Yu, W.Z., Sun, K.N.: Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance. J. Membr. Sci. 593, 117431 (2020)CrossRef Liu, T., Liu, X.Y., Graham, N., Yu, W.Z., Sun, K.N.: Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance. J. Membr. Sci. 593, 117431 (2020)CrossRef
5.
go back to reference Rafiq, S., Awan, S., Zheng, R.K., Wen, Z.C., Rani, M., Akinwande, D., et al.: Novel room-temperature ferromagnetism in Gd-doped 2-dimensional Ti3C2Tx MXene semiconductor for spintronics. J. Magn. Magn. Mater. 497, 165954 (2020)CrossRef Rafiq, S., Awan, S., Zheng, R.K., Wen, Z.C., Rani, M., Akinwande, D., et al.: Novel room-temperature ferromagnetism in Gd-doped 2-dimensional Ti3C2Tx MXene semiconductor for spintronics. J. Magn. Magn. Mater. 497, 165954 (2020)CrossRef
6.
go back to reference Yao, Y., Lan, L.Y., Liu, X.X., Ying, Y.B., Ping, J.F.: Spontaneous growth and regulation of noble metal nanoparticles on flexible biomimetic MXene paper for bioelectronics. Biosens. Bioelectron. 148, 111799 (2020)CrossRef Yao, Y., Lan, L.Y., Liu, X.X., Ying, Y.B., Ping, J.F.: Spontaneous growth and regulation of noble metal nanoparticles on flexible biomimetic MXene paper for bioelectronics. Biosens. Bioelectron. 148, 111799 (2020)CrossRef
7.
go back to reference Li, S., He, J.J., Nachtigall, P., Grajciar, L., Brivio, F.: Control of spintronic and electronic properties of bimetallic and vacancy-ordered vanadium carbide MXenes via surface functionalization. Phy. Chem. Chem. Phy. 21, 25802–25808 (2019)CrossRef Li, S., He, J.J., Nachtigall, P., Grajciar, L., Brivio, F.: Control of spintronic and electronic properties of bimetallic and vacancy-ordered vanadium carbide MXenes via surface functionalization. Phy. Chem. Chem. Phy. 21, 25802–25808 (2019)CrossRef
8.
go back to reference Shi, Y.Q., Liu, C., Liu, L., Fu, L.B., Yu, B., Lv, Y.C., et al.: Strengthening, toughing and thermally stable ultra-thin MXene nanosheets/polypropylene nanocomposites via nanoconfinement. Chem. Eng. J. 378, 122267 (2019)CrossRef Shi, Y.Q., Liu, C., Liu, L., Fu, L.B., Yu, B., Lv, Y.C., et al.: Strengthening, toughing and thermally stable ultra-thin MXene nanosheets/polypropylene nanocomposites via nanoconfinement. Chem. Eng. J. 378, 122267 (2019)CrossRef
9.
go back to reference Tao, N., Zhang, D.P., Li, X.L., Lou, D.Y., Sun, X.Y., Wei, C.W., et al.: Near-infrared light-responsive hydrogels via peroxide-decorated MXene-initiated polymerization. Chem. Sci. 10, 10765–10771 (2019)CrossRef Tao, N., Zhang, D.P., Li, X.L., Lou, D.Y., Sun, X.Y., Wei, C.W., et al.: Near-infrared light-responsive hydrogels via peroxide-decorated MXene-initiated polymerization. Chem. Sci. 10, 10765–10771 (2019)CrossRef
10.
go back to reference Gu, B.H., Ku, Y.K., Jardine, P.M.: Sorption and binary exchange of nitrate, sulfate, and uranium on an anion-exchange resin. Environ. Sci. Technol. 38, 3184–3188 (2004)CrossRef Gu, B.H., Ku, Y.K., Jardine, P.M.: Sorption and binary exchange of nitrate, sulfate, and uranium on an anion-exchange resin. Environ. Sci. Technol. 38, 3184–3188 (2004)CrossRef
11.
go back to reference Fu, F.L., Xie, L.P., Tang, B., Wang, Q., Jiang, S.X.: Application of a novel strategy-Advanced Fenton-chemical precipitation to the treatment of strong stability chelated heavy metal containing wastewater. Chem. Eng. J. 189, 283–287 (2012)CrossRef Fu, F.L., Xie, L.P., Tang, B., Wang, Q., Jiang, S.X.: Application of a novel strategy-Advanced Fenton-chemical precipitation to the treatment of strong stability chelated heavy metal containing wastewater. Chem. Eng. J. 189, 283–287 (2012)CrossRef
12.
go back to reference Zhang, Q., Wang, N., Zhao, L.B., Xu, T.W., Cheng, Y.Y.: Polyamidoamine dendronized hollow fiber membranes in the recovery of heavy metal ions. ACS Appl. Mater. Interfaces. 5, 1907–1912 (2013)CrossRef Zhang, Q., Wang, N., Zhao, L.B., Xu, T.W., Cheng, Y.Y.: Polyamidoamine dendronized hollow fiber membranes in the recovery of heavy metal ions. ACS Appl. Mater. Interfaces. 5, 1907–1912 (2013)CrossRef
13.
go back to reference Kerisit, S., Liu, C.X.: Molecular dynamics simulations of uranyl and uranyl carbonate adsorption at aluminosilicate surfaces. Environ. Sci. Technol. 48, 3899–3907 (2014)CrossRef Kerisit, S., Liu, C.X.: Molecular dynamics simulations of uranyl and uranyl carbonate adsorption at aluminosilicate surfaces. Environ. Sci. Technol. 48, 3899–3907 (2014)CrossRef
14.
go back to reference Bhattacharyya, K.G., Sen, G.S.: Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv. Coll. Interface. Sci. 140, 114–131 (2008)CrossRef Bhattacharyya, K.G., Sen, G.S.: Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv. Coll. Interface. Sci. 140, 114–131 (2008)CrossRef
15.
go back to reference Sen Gupta, S., Bhattacharyya, K.G.: Adsorption of heavy metals on kaolinite and montmorillonite: a review. Phy. Chem. Chem. Phy. 14, 6698–6723 (2012)CrossRef Sen Gupta, S., Bhattacharyya, K.G.: Adsorption of heavy metals on kaolinite and montmorillonite: a review. Phy. Chem. Chem. Phy. 14, 6698–6723 (2012)CrossRef
16.
go back to reference Adeyemo, A.A., Adeoye, I.O., Bello, O.S.: Metal organic frameworks as adsorbents for dye adsorption: overview, prospects and future challenges. Toxicol. Environ. Chem. 94, 1846–1863 (2012)CrossRef Adeyemo, A.A., Adeoye, I.O., Bello, O.S.: Metal organic frameworks as adsorbents for dye adsorption: overview, prospects and future challenges. Toxicol. Environ. Chem. 94, 1846–1863 (2012)CrossRef
17.
go back to reference Yuan, L.Y., Tian, M., Lan, J.H., Cao, X.Z., Wang, X.L., Chai, Z.F., et al.: Defect engineering in metal-organic frameworks: a new strategy to develop applicable actinide sorbents. Chem. Commun. 54, 370–373 (2018)CrossRef Yuan, L.Y., Tian, M., Lan, J.H., Cao, X.Z., Wang, X.L., Chai, Z.F., et al.: Defect engineering in metal-organic frameworks: a new strategy to develop applicable actinide sorbents. Chem. Commun. 54, 370–373 (2018)CrossRef
18.
go back to reference Wang, S.B., Sun, H.Q., Ang, H.M., Tade, M.O.: Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem. Eng. J. 226, 336–347 (2013)CrossRef Wang, S.B., Sun, H.Q., Ang, H.M., Tade, M.O.: Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem. Eng. J. 226, 336–347 (2013)CrossRef
19.
go back to reference Perreault, F., de Faria, A.F., Elimelech, M.: Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 44, 5861–5896 (2015)CrossRef Perreault, F., de Faria, A.F., Elimelech, M.: Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 44, 5861–5896 (2015)CrossRef
20.
go back to reference Zhao, G.X., Wen, T., Chen, C.L., Wang, X.K.: Synthesis of graphene-based nanomaterials and their application in energy-related and environmental-related areas. RSC Adv. 2, 9286–9303 (2012)CrossRef Zhao, G.X., Wen, T., Chen, C.L., Wang, X.K.: Synthesis of graphene-based nanomaterials and their application in energy-related and environmental-related areas. RSC Adv. 2, 9286–9303 (2012)CrossRef
21.
go back to reference Yuan, L.Y., Bai, Z.Q., Zhao, R., Liu, Y.L., Li, Z.J., Chu, S.Q., et al.: Introduction of bifunctional groups into mesoporous silica for enhancing uptake of thorium(IV) from aqueous solution. ACS Appl. Mater. Interfaces. 6, 4786–4796 (2014)CrossRef Yuan, L.Y., Bai, Z.Q., Zhao, R., Liu, Y.L., Li, Z.J., Chu, S.Q., et al.: Introduction of bifunctional groups into mesoporous silica for enhancing uptake of thorium(IV) from aqueous solution. ACS Appl. Mater. Interfaces. 6, 4786–4796 (2014)CrossRef
22.
go back to reference Zhang, Y.J., Wang, L., Zhang, N.N., Zhou, Z.J.: Adsorptive environmental applications of MXene nanomaterials: A review. RSC Adv. 8, 19895–19905 (2018)CrossRef Zhang, Y.J., Wang, L., Zhang, N.N., Zhou, Z.J.: Adsorptive environmental applications of MXene nanomaterials: A review. RSC Adv. 8, 19895–19905 (2018)CrossRef
23.
go back to reference Guo, J.X., Peng, Q.M., Fu, H., Zou, G.D., Zhang, Q.R.: Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations. J. Phys. Chem. C 119, 20923–20930 (2015)CrossRef Guo, J.X., Peng, Q.M., Fu, H., Zou, G.D., Zhang, Q.R.: Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations. J. Phys. Chem. C 119, 20923–20930 (2015)CrossRef
24.
go back to reference Guo, J.X., Fu, H., Zou, G.D., Zhang, Q.R., Zhang, Z.W., Peng, Q.M.: Theoretical interpretation on lead adsorption behavior of new two-dimensional transition metal carbides and nitrides. J. Alloy. Compd. 684, 504–509 (2016)CrossRef Guo, J.X., Fu, H., Zou, G.D., Zhang, Q.R., Zhang, Z.W., Peng, Q.M.: Theoretical interpretation on lead adsorption behavior of new two-dimensional transition metal carbides and nitrides. J. Alloy. Compd. 684, 504–509 (2016)CrossRef
25.
go back to reference Guo, X., Zhang, X.T., Zhao, S.J., Huang, Q., Xue, J.M.: High adsorption capacity of heavy metals on two-dimensional MXenes: an ab initio study with molecular dynamics simulation. Phy. Chem. Chem. Phy. 18, 228–233 (2016)CrossRef Guo, X., Zhang, X.T., Zhao, S.J., Huang, Q., Xue, J.M.: High adsorption capacity of heavy metals on two-dimensional MXenes: an ab initio study with molecular dynamics simulation. Phy. Chem. Chem. Phy. 18, 228–233 (2016)CrossRef
26.
go back to reference Peng, Q.M., Guo, J.X., Zhang, Q.R., Xiang, J.Y., Liu, B.Z., Zhou, A.G., et al.: Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J. Am. Chem. Soc. 136, 4113–4116 (2014)CrossRef Peng, Q.M., Guo, J.X., Zhang, Q.R., Xiang, J.Y., Liu, B.Z., Zhou, A.G., et al.: Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J. Am. Chem. Soc. 136, 4113–4116 (2014)CrossRef
27.
go back to reference Du, Y.C., Yu, B., Wei, L.Q., Wang, Y.L., Zhang, X.M., Ye, S.F.: Efficient removal of Pb(II) by Ti3C2Tx powder modified with a silane coupling agent. J. Mater. Sci. 54, 13283–13297 (2019)CrossRef Du, Y.C., Yu, B., Wei, L.Q., Wang, Y.L., Zhang, X.M., Ye, S.F.: Efficient removal of Pb(II) by Ti3C2Tx powder modified with a silane coupling agent. J. Mater. Sci. 54, 13283–13297 (2019)CrossRef
28.
go back to reference Wang, G.Q., Xing, W., Zhuo, S.P.: Nitrogen-doped graphene as low-cost counter electrode for high-efficiency dye-sensitized solar cells. Electrochim. Acta 92, 269–275 (2013)CrossRef Wang, G.Q., Xing, W., Zhuo, S.P.: Nitrogen-doped graphene as low-cost counter electrode for high-efficiency dye-sensitized solar cells. Electrochim. Acta 92, 269–275 (2013)CrossRef
29.
go back to reference Guo, D.M., An, Q.D., Xiao, Z.Y., Zhai, S.R., Yang, D.J.: Efficient removal of Pb(II), Cr(VI) and organic dyes by polydopamine modified chitosan aerogels. Carbohyd. Polym. 202, 306–314 (2018)CrossRef Guo, D.M., An, Q.D., Xiao, Z.Y., Zhai, S.R., Yang, D.J.: Efficient removal of Pb(II), Cr(VI) and organic dyes by polydopamine modified chitosan aerogels. Carbohyd. Polym. 202, 306–314 (2018)CrossRef
30.
go back to reference Rangel-Mendeza, J.R., Monroy-Zepeda, R., Leyva-Ramos, E., Diaz-Flores, P.E., Shirai, K.: Chitosan selectivity for removing cadmium (II), copper (II), and lead (II) from aqueous phase: pH and organic matter effect. J. Hazard. Mater. 162, 503–511 (2009)CrossRef Rangel-Mendeza, J.R., Monroy-Zepeda, R., Leyva-Ramos, E., Diaz-Flores, P.E., Shirai, K.: Chitosan selectivity for removing cadmium (II), copper (II), and lead (II) from aqueous phase: pH and organic matter effect. J. Hazard. Mater. 162, 503–511 (2009)CrossRef
31.
go back to reference Dong, Y.J., Sang, D.S., He, C.D., Sheng, X.F., Lei, L.W.: Mxene/alginate composites for lead and copper ion removal from aqueous solutions. RSC Advances. 9, 29015–29022 (2019)CrossRef Dong, Y.J., Sang, D.S., He, C.D., Sheng, X.F., Lei, L.W.: Mxene/alginate composites for lead and copper ion removal from aqueous solutions. RSC Advances. 9, 29015–29022 (2019)CrossRef
32.
go back to reference Huang, Y.G., Wang, Z.Q.: Preparation of composite aerogels based on sodium alginate, and its application in removal of Pb2+ and Cu2+ from water. Int. J. Biol. Macromol. 107, 741–747 (2018)CrossRef Huang, Y.G., Wang, Z.Q.: Preparation of composite aerogels based on sodium alginate, and its application in removal of Pb2+ and Cu2+ from water. Int. J. Biol. Macromol. 107, 741–747 (2018)CrossRef
33.
go back to reference Ying, Y.L., Liu, Y., Wang, X.Y., Mao, Y.Y., Cao, W., Hu, P., et al.: Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water. ACS Appl. Mater. Interfaces. 7, 1795–1803 (2015)CrossRef Ying, Y.L., Liu, Y., Wang, X.Y., Mao, Y.Y., Cao, W., Hu, P., et al.: Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water. ACS Appl. Mater. Interfaces. 7, 1795–1803 (2015)CrossRef
34.
go back to reference Zou, G.D., Guo, J.X., Peng, Q.M., Zhou, A.G., Zhang, Q.R., Liu, B.Z.: Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation. J. Mater. Chem. A. 4, 489–499 (2016)CrossRef Zou, G.D., Guo, J.X., Peng, Q.M., Zhou, A.G., Zhang, Q.R., Liu, B.Z.: Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation. J. Mater. Chem. A. 4, 489–499 (2016)CrossRef
35.
go back to reference Tang, Y., Yang, C.H., Que, W.X.: A novel two-dimensional accordion-like titanium carbide (MXene) for adsorption of Cr(VI) from aqueous solution. J. Adv. Dielectr. 8, 1850035 (2018)CrossRef Tang, Y., Yang, C.H., Que, W.X.: A novel two-dimensional accordion-like titanium carbide (MXene) for adsorption of Cr(VI) from aqueous solution. J. Adv. Dielectr. 8, 1850035 (2018)CrossRef
36.
go back to reference Huang, Q.S., Liu, Y.T., Cai, T., Xia, X.N.: Simultaneous removal of heavy metal ions and organic pollutant by BiOBr/Ti3C2 nanocomposite. J. Photochem. Photobiol. A-Chem. 375, 201–208 (2019)CrossRef Huang, Q.S., Liu, Y.T., Cai, T., Xia, X.N.: Simultaneous removal of heavy metal ions and organic pollutant by BiOBr/Ti3C2 nanocomposite. J. Photochem. Photobiol. A-Chem. 375, 201–208 (2019)CrossRef
37.
go back to reference Shahzad, A., Rasool, K., Miran, W., Nawaz, M., Jang, J.S., Mahmoud, K.A., et al.: Two-dimensional Ti3C2TX MXene nanosheets for efficient copper removal from water. ACS Sustain. Chem. Eng. 5, 11481–11488 (2017)CrossRef Shahzad, A., Rasool, K., Miran, W., Nawaz, M., Jang, J.S., Mahmoud, K.A., et al.: Two-dimensional Ti3C2TX MXene nanosheets for efficient copper removal from water. ACS Sustain. Chem. Eng. 5, 11481–11488 (2017)CrossRef
38.
go back to reference Fard, A.K., McKay, G., Chamoun, R., Rhadfi, T., Preud’Homme, H., Atieh, M.A.: Barium removal from synthetic natural and produced water using MXene as two dimensional (2-D) nanosheet adsorbent. Chem. Eng. J. 317, 331–342 (2017)CrossRef Fard, A.K., McKay, G., Chamoun, R., Rhadfi, T., Preud’Homme, H., Atieh, M.A.: Barium removal from synthetic natural and produced water using MXene as two dimensional (2-D) nanosheet adsorbent. Chem. Eng. J. 317, 331–342 (2017)CrossRef
39.
go back to reference Shahzad, A., Rasool, K., Miran, W., Nawaz, M., Jang, J.S., Mahmoud, K.A., et al.: Mercuric ion capturing by recoverable titanium carbide magnetic nanocomposite. J. Hazard. Mater. 344, 811–818 (2018)CrossRef Shahzad, A., Rasool, K., Miran, W., Nawaz, M., Jang, J.S., Mahmoud, K.A., et al.: Mercuric ion capturing by recoverable titanium carbide magnetic nanocomposite. J. Hazard. Mater. 344, 811–818 (2018)CrossRef
40.
go back to reference Shahzad, A., Nawaz, M., Mortahida, M., Jang, J., Tahir, K., Kim, J., et al.: Ti3C2Tx MXene core-shell spheres for ultrahigh removal of mercuric ions. Chem. Eng. J. 368, 400–408 (2019)CrossRef Shahzad, A., Nawaz, M., Mortahida, M., Jang, J., Tahir, K., Kim, J., et al.: Ti3C2Tx MXene core-shell spheres for ultrahigh removal of mercuric ions. Chem. Eng. J. 368, 400–408 (2019)CrossRef
41.
go back to reference Shahzad, A., Nawaz, M., Mortahida, M., Tahir, K., Kim, J., Lim, Y., et al.: Exfoliation of titanium aluminum carbide (211 MAX phase) to form nanofibers and two-dimensional nanosheets and their application in aqueous-phase cadmium sequestration. ACS Appl. Mater. Interfaces. 11, 19156–19166 (2019)CrossRef Shahzad, A., Nawaz, M., Mortahida, M., Tahir, K., Kim, J., Lim, Y., et al.: Exfoliation of titanium aluminum carbide (211 MAX phase) to form nanofibers and two-dimensional nanosheets and their application in aqueous-phase cadmium sequestration. ACS Appl. Mater. Interfaces. 11, 19156–19166 (2019)CrossRef
42.
go back to reference Rasool, K., Pandey, R.P., Rasheed, P.A., Buczek, S., Gogotsi, Y., Mahmoud, K.A.: Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes). Mater. Today 30, 80–102 (2019)CrossRef Rasool, K., Pandey, R.P., Rasheed, P.A., Buczek, S., Gogotsi, Y., Mahmoud, K.A.: Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes). Mater. Today 30, 80–102 (2019)CrossRef
43.
go back to reference Sinopoli, A., Othman, Z., Rasool, K., Mahmoud, K.A.: Electrocatalytic/photocatalytic properties and aqueous media applications of 2D transition metal carbides (MXenes). Curr. Opin. Solid State Mater. Sci. 23, 100760 (2019)CrossRef Sinopoli, A., Othman, Z., Rasool, K., Mahmoud, K.A.: Electrocatalytic/photocatalytic properties and aqueous media applications of 2D transition metal carbides (MXenes). Curr. Opin. Solid State Mater. Sci. 23, 100760 (2019)CrossRef
44.
go back to reference Mashtalir, O., Cook, K.M., Mochalin, V.N., Crowe, M., Barsoum, M.W., Gogotsi, Y.: Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A. 2, 14334–14338 (2014)CrossRef Mashtalir, O., Cook, K.M., Mochalin, V.N., Crowe, M., Barsoum, M.W., Gogotsi, Y.: Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A. 2, 14334–14338 (2014)CrossRef
45.
go back to reference Zheng, W., Zhang, P.G., Tian, W.B., Qin, X., Zhang, Y.M., Sun, Z.M.: Alkali treated Ti3C2Tx MXenes and their dye adsorption performance. Mater. Chem. Phys. 206, 270–276 (2018)CrossRef Zheng, W., Zhang, P.G., Tian, W.B., Qin, X., Zhang, Y.M., Sun, Z.M.: Alkali treated Ti3C2Tx MXenes and their dye adsorption performance. Mater. Chem. Phys. 206, 270–276 (2018)CrossRef
46.
go back to reference Gao, Y.P., Wang, L.B., Zhou, A.G., Li, Z.Y., Chen, J.K., Bala, H., et al.: Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater. Lett. 150, 62–64 (2015)CrossRef Gao, Y.P., Wang, L.B., Zhou, A.G., Li, Z.Y., Chen, J.K., Bala, H., et al.: Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater. Lett. 150, 62–64 (2015)CrossRef
47.
go back to reference Peng, C., Yang, X.F., Li, Y.H., Yu, H., Wang, H.J., Peng, F.: Hybrids of two-dimensional Ti3C2 and TiO2 exposing (001) facets toward enhanced photocatalytic activity. ACS Appl. Mater. Interfaces. 8, 6051–6060 (2016)CrossRef Peng, C., Yang, X.F., Li, Y.H., Yu, H., Wang, H.J., Peng, F.: Hybrids of two-dimensional Ti3C2 and TiO2 exposing (001) facets toward enhanced photocatalytic activity. ACS Appl. Mater. Interfaces. 8, 6051–6060 (2016)CrossRef
48.
go back to reference Zhou, W.J., Zhu, J.F., Wang, F., Cao, M.J., Zhao, T.: One-step synthesis of Ceria/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater. Lett. 206, 237–240 (2017)CrossRef Zhou, W.J., Zhu, J.F., Wang, F., Cao, M.J., Zhao, T.: One-step synthesis of Ceria/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater. Lett. 206, 237–240 (2017)CrossRef
49.
go back to reference Peng, C., Wei, P., Chen, X., Zhang, Y.L., Zhu, F., Cao, Y.H., et al.: A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): enhanced exfoliation and improved adsorption performance. Ceram. Int. 44, 18886–18893 (2018)CrossRef Peng, C., Wei, P., Chen, X., Zhang, Y.L., Zhu, F., Cao, Y.H., et al.: A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): enhanced exfoliation and improved adsorption performance. Ceram. Int. 44, 18886–18893 (2018)CrossRef
50.
go back to reference Zhu, Z.B., Xiang, M.X., Shan, L.L., He, T., Zhang, P.: Effect of temperature on methylene blue removal with novel 2D-Magnetism titanium carbide. J. Solid State Chem. 280, 86–93 (2019)CrossRef Zhu, Z.B., Xiang, M.X., Shan, L.L., He, T., Zhang, P.: Effect of temperature on methylene blue removal with novel 2D-Magnetism titanium carbide. J. Solid State Chem. 280, 86–93 (2019)CrossRef
51.
go back to reference Fang, H.J., Pan, Y.S., Yin, M.Y., Xu, L.F., Zhu, Y., Pan, C.L.: Facile synthesis of ternary Ti3C2-OH/ln2S3/CdS composite with efficient adsorption and photocatalytic performance towards organic dyes. J. Solid State Chem. 280, 71–81 (2019)CrossRef Fang, H.J., Pan, Y.S., Yin, M.Y., Xu, L.F., Zhu, Y., Pan, C.L.: Facile synthesis of ternary Ti3C2-OH/ln2S3/CdS composite with efficient adsorption and photocatalytic performance towards organic dyes. J. Solid State Chem. 280, 71–81 (2019)CrossRef
52.
go back to reference Zhang, Y.J., Zhou, Z.J., Lan, J.H., Ge, C.C., Chai, Z.F., Zhang, P.H., et al.: Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene. Appl. Surf. Sci. 426, 572–578 (2017)CrossRef Zhang, Y.J., Zhou, Z.J., Lan, J.H., Ge, C.C., Chai, Z.F., Zhang, P.H., et al.: Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene. Appl. Surf. Sci. 426, 572–578 (2017)CrossRef
53.
go back to reference Zhang, Y.J., Lan, J.H., Wang, L., Wu, Q.Y., Wang, C.Z., Bo, T., et al.: Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: a first-principles study. J. Hazard. Mater. 308, 402–410 (2016)CrossRef Zhang, Y.J., Lan, J.H., Wang, L., Wu, Q.Y., Wang, C.Z., Bo, T., et al.: Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: a first-principles study. J. Hazard. Mater. 308, 402–410 (2016)CrossRef
54.
go back to reference Wang, L., Tao, W.Q., Yuan, L.Y., Liu, Z.R., Huang, Q., Chai, Z.F., et al.: Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chem. Commun. 53, 12084–12087 (2017)CrossRef Wang, L., Tao, W.Q., Yuan, L.Y., Liu, Z.R., Huang, Q., Chai, Z.F., et al.: Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chem. Commun. 53, 12084–12087 (2017)CrossRef
55.
go back to reference Wang, L., Yuan, L.Y., Chen, K., Zhang, Y.J., Deng, Q.H., Du, S.Y., et al.: Loading actinides in multilayered structures for nuclear waste treatment: The first case study of uranium capture with vanadium carbide MXene. ACS Appl. Mater. Interfaces. 8, 16396–16403 (2016)CrossRef Wang, L., Yuan, L.Y., Chen, K., Zhang, Y.J., Deng, Q.H., Du, S.Y., et al.: Loading actinides in multilayered structures for nuclear waste treatment: The first case study of uranium capture with vanadium carbide MXene. ACS Appl. Mater. Interfaces. 8, 16396–16403 (2016)CrossRef
56.
go back to reference Krupa, S.V., Legge, A.H.: Passive sampling of ambient, gaseous air pollutants: an assessment from an ecological perspective. Environ. Pollut. 107, 31–45 (2000)CrossRef Krupa, S.V., Legge, A.H.: Passive sampling of ambient, gaseous air pollutants: an assessment from an ecological perspective. Environ. Pollut. 107, 31–45 (2000)CrossRef
57.
go back to reference Samaddar, P., Son, Y.S., Tsang, D.C.W., Kim, K.H., Kumar, S.: Progress in graphene-based materials as superior media for sensing, sorption, and separation of gaseous pollutants. Coord. Chem. Rev. 368, 93–114 (2018)CrossRef Samaddar, P., Son, Y.S., Tsang, D.C.W., Kim, K.H., Kumar, S.: Progress in graphene-based materials as superior media for sensing, sorption, and separation of gaseous pollutants. Coord. Chem. Rev. 368, 93–114 (2018)CrossRef
58.
go back to reference Soreanu, G., Dixon, M., Darlington, A.: Botanical biofiltration of indoor gaseous pollutants - A mini-review. Chem. Eng. J. 229, 585–594 (2013)CrossRef Soreanu, G., Dixon, M., Darlington, A.: Botanical biofiltration of indoor gaseous pollutants - A mini-review. Chem. Eng. J. 229, 585–594 (2013)CrossRef
59.
go back to reference Yu, X.F., Li, Y.C., Cheng, J.B., Liu, Z.B., Li, Q.Z., Li, W.Z., et al.: Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl. Mater. Interfaces. 7, 13707–13713 (2015a)CrossRef Yu, X.F., Li, Y.C., Cheng, J.B., Liu, Z.B., Li, Q.Z., Li, W.Z., et al.: Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl. Mater. Interfaces. 7, 13707–13713 (2015a)CrossRef
60.
go back to reference Morales-Garcia, A., Fernandez-Fernandez, A., Vines, F., Illas, F.: CO2 abatement using two-dimensional MXene carbides. J. Mater. Chem. A. 6, 3381–3385 (2018)CrossRef Morales-Garcia, A., Fernandez-Fernandez, A., Vines, F., Illas, F.: CO2 abatement using two-dimensional MXene carbides. J. Mater. Chem. A. 6, 3381–3385 (2018)CrossRef
61.
go back to reference Morales-Salvador, R., Morales-Garcia, A., Vines, F., Illas, F.: Two-dimensional nitrides as highly efficient potential candidates for CO2 capture and activation. Phys. Chem. Chem. Phys. 20, 17117–17124 (2018)CrossRef Morales-Salvador, R., Morales-Garcia, A., Vines, F., Illas, F.: Two-dimensional nitrides as highly efficient potential candidates for CO2 capture and activation. Phys. Chem. Chem. Phys. 20, 17117–17124 (2018)CrossRef
62.
go back to reference Zhang, Q.R., Teng, J., Zou, G.D., Peng, Q.M., Du, Q., Jiao, T.F., et al.: Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale. 8, 7085–7093 (2016)CrossRef Zhang, Q.R., Teng, J., Zou, G.D., Peng, Q.M., Du, Q., Jiao, T.F., et al.: Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale. 8, 7085–7093 (2016)CrossRef
63.
go back to reference Meng, F.Y., Seredych, M., Chen, C., Gura, V., Mikhalovsky, S., Sandeman, S., et al.: MXene sorbents for removal of urea from dialysate: A step toward the wearable artificial kidney. ACS Nano 12, 10518–10528 (2018)CrossRef Meng, F.Y., Seredych, M., Chen, C., Gura, V., Mikhalovsky, S., Sandeman, S., et al.: MXene sorbents for removal of urea from dialysate: A step toward the wearable artificial kidney. ACS Nano 12, 10518–10528 (2018)CrossRef
64.
go back to reference Sinha, A., Lu, X., Wu, L., Tan, D., Li, Y., et al.: Voltammetric sensing of biomolecules at carbon based electrode interfaces: a review. TrAC-Trends Anal. Chem. 98, 174–89 (2018) Sinha, A., Lu, X., Wu, L., Tan, D., Li, Y., et al.: Voltammetric sensing of biomolecules at carbon based electrode interfaces: a review. TrAC-Trends Anal. Chem. 98, 174–89 (2018)
65.
go back to reference Sinha, A., Tan, B., Huang, Y., Zhao, H., Dang, X., et al.: MoS2 nanostructures for electrochemical sensing of multidisciplinary targets: a review. TrAC-Trends Anal. Chem. 102, 75–90 (2018) Sinha, A., Tan, B., Huang, Y., Zhao, H., Dang, X., et al.: MoS2 nanostructures for electrochemical sensing of multidisciplinary targets: a review. TrAC-Trends Anal. Chem. 102, 75–90 (2018)
66.
go back to reference Kim, H.U., Kim, H.Y., Kulkarni, A., Ahn, C., Jin, Y., Kim, Y., et al.: A sensitive electrochemical sensor for in vitro detection of parathyroid hormone based on a MoS2-graphene composite. Sci. Rep. 6 (2016) Kim, H.U., Kim, H.Y., Kulkarni, A., Ahn, C., Jin, Y., Kim, Y., et al.: A sensitive electrochemical sensor for in vitro detection of parathyroid hormone based on a MoS2-graphene composite. Sci. Rep. 6 (2016)
67.
go back to reference Wu, D.H., Wu, M.Y., Yang, J.H., Zhang, H.W., Xie, K.F., Lin, C.T., et al.: Delaminated Ti3C2Tx (MXene) for electrochemical carbendazim sensing. Mater. Lett. 236, 412–415 (2019)CrossRef Wu, D.H., Wu, M.Y., Yang, J.H., Zhang, H.W., Xie, K.F., Lin, C.T., et al.: Delaminated Ti3C2Tx (MXene) for electrochemical carbendazim sensing. Mater. Lett. 236, 412–415 (2019)CrossRef
68.
go back to reference Mohammadniaei, M., Nguyen, H.V., Tieu, M.V., Lee, M.H.: 2D materials in development of electrochemical point-of-care cancer dcreening devices. Micromachines. 10, 662 (2019)CrossRef Mohammadniaei, M., Nguyen, H.V., Tieu, M.V., Lee, M.H.: 2D materials in development of electrochemical point-of-care cancer dcreening devices. Micromachines. 10, 662 (2019)CrossRef
69.
go back to reference Zhou, S.J., Gu, C.X., Li, Z.Z., Yang, L.Y., He, L.H., Wang, M.H., et al.: Ti3C2Tx MXene and polyoxometalate nanohybrid embedded with polypyrrole: ultra-sensitive platform for the detection of osteopontin. Appl. Surf. Sci. 498, 143889 (2019)CrossRef Zhou, S.J., Gu, C.X., Li, Z.Z., Yang, L.Y., He, L.H., Wang, M.H., et al.: Ti3C2Tx MXene and polyoxometalate nanohybrid embedded with polypyrrole: ultra-sensitive platform for the detection of osteopontin. Appl. Surf. Sci. 498, 143889 (2019)CrossRef
70.
go back to reference Sinha, A., Zhao, H., Huang, Y., Lu, X., Chen, J., et al. MXene: an emerging material for sensing and biosensing. TrAC-Trends Anal. Chem.105, 424–35 (2018) Sinha, A., Zhao, H., Huang, Y., Lu, X., Chen, J., et al. MXene: an emerging material for sensing and biosensing. TrAC-Trends Anal. Chem.105, 424–35 (2018)
71.
go back to reference Rakhi, R.B., Nayuk, P., Xia, C., Alshareef, H.N.: Novel amperometric glucose biosensor based on MXene nanocomposite. Sci. Rep. 6, 36422 (2016)CrossRef Rakhi, R.B., Nayuk, P., Xia, C., Alshareef, H.N.: Novel amperometric glucose biosensor based on MXene nanocomposite. Sci. Rep. 6, 36422 (2016)CrossRef
72.
go back to reference Wang, F., Yang, C.H., Duan, C.Y., Xiao, D., Tang, Y., Zhu, J.F.: An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor. J. Electrochem. Soc. 162, B16–B21 (2015)CrossRef Wang, F., Yang, C.H., Duan, C.Y., Xiao, D., Tang, Y., Zhu, J.F.: An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor. J. Electrochem. Soc. 162, B16–B21 (2015)CrossRef
73.
go back to reference Liu, H., Duan, C.Y., Yang, C.H., Shen, W.Q., Wang, F., Zhu, Z.F.: A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Sens. Actuat. B-Chem. 218, 60–66 (2015)CrossRef Liu, H., Duan, C.Y., Yang, C.H., Shen, W.Q., Wang, F., Zhu, Z.F.: A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Sens. Actuat. B-Chem. 218, 60–66 (2015)CrossRef
74.
go back to reference Wang, F., Yang, C.H., Duan, M., Tang, Y., Zhu, J.F.: TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. Biosens. Bioelectron. 74, 1022–1028 (2015)CrossRef Wang, F., Yang, C.H., Duan, M., Tang, Y., Zhu, J.F.: TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. Biosens. Bioelectron. 74, 1022–1028 (2015)CrossRef
75.
go back to reference Zheng, J.S., Diao, J.L., Jin, Y.Z., Ding, A.L., Wang, B., Wu, L.Z., et al.: An inkjet printed Ti3C2-GO eectrode for the electrochemical sensing of hydrogen eroxide. J. Electrochem. Soc. 165, B227–B231 (2018)CrossRef Zheng, J.S., Diao, J.L., Jin, Y.Z., Ding, A.L., Wang, B., Wu, L.Z., et al.: An inkjet printed Ti3C2-GO eectrode for the electrochemical sensing of hydrogen eroxide. J. Electrochem. Soc. 165, B227–B231 (2018)CrossRef
76.
go back to reference Lorencova, L., Bertok, T., Filip, J., Jerigova, M., Velic, D., Kasak, P., et al.: Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications. Sens. Actuat. B-Chem. 263, 360–368 (2018)CrossRef Lorencova, L., Bertok, T., Filip, J., Jerigova, M., Velic, D., Kasak, P., et al.: Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications. Sens. Actuat. B-Chem. 263, 360–368 (2018)CrossRef
77.
go back to reference Lorencova, L., Bertok, T., Dosekova, E., Holazova, A., Paprckova, D., Vikartovska, A., et al.: Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing. Electrochim. Acta 235, 471–479 (2017)CrossRef Lorencova, L., Bertok, T., Dosekova, E., Holazova, A., Paprckova, D., Vikartovska, A., et al.: Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing. Electrochim. Acta 235, 471–479 (2017)CrossRef
78.
go back to reference Wu, L., Lu, X., Wu, Z.S., Dong, Y., Wang, X., et al.: 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Biosens. Bioelectr. 107, 69–75 (2018) Wu, L., Lu, X., Wu, Z.S., Dong, Y., Wang, X., et al.: 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Biosens. Bioelectr. 107, 69–75 (2018)
79.
go back to reference Zhu, X.L., Liu, B.C., Hou, H.J., Huang, Z.Y., Zeinu, K.M., Huang, L., et al.: Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II) and Hg(II). Electrochim. Acta 248, 46–57 (2017)CrossRef Zhu, X.L., Liu, B.C., Hou, H.J., Huang, Z.Y., Zeinu, K.M., Huang, L., et al.: Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II) and Hg(II). Electrochim. Acta 248, 46–57 (2017)CrossRef
80.
go back to reference Rasheed, P.A., Pandey, R.P., Rasool, K., Mahmoud, K.A.: Ultra-sensitive electrocatalytic detection of bromate in drinking water based on Nafion/Ti3C2Tx (MXene) modified glassy carbon electrode. Sens. Actuat. B-Chem. 265, 652–659 (2018)CrossRef Rasheed, P.A., Pandey, R.P., Rasool, K., Mahmoud, K.A.: Ultra-sensitive electrocatalytic detection of bromate in drinking water based on Nafion/Ti3C2Tx (MXene) modified glassy carbon electrode. Sens. Actuat. B-Chem. 265, 652–659 (2018)CrossRef
81.
go back to reference Zhou, L.Y., Zhang, X.M., Ma, L., Gao, J., Jiang, Y.J.: Acetylcholinesterase/chitosan-transition metal carbides nanocomposites-based biosensor for the organophosphate pesticides detection. Biochem. Eng. J. 128, 243–249 (2017)CrossRef Zhou, L.Y., Zhang, X.M., Ma, L., Gao, J., Jiang, Y.J.: Acetylcholinesterase/chitosan-transition metal carbides nanocomposites-based biosensor for the organophosphate pesticides detection. Biochem. Eng. J. 128, 243–249 (2017)CrossRef
82.
go back to reference Xu, B.Z., Zhu, M.S., Zhang, W.C., Zhen, X., Pei, Z.X., Xue, Q., et al.: Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv. Mater. 28, 3333–3339 (2016)CrossRef Xu, B.Z., Zhu, M.S., Zhang, W.C., Zhen, X., Pei, Z.X., Xue, Q., et al.: Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv. Mater. 28, 3333–3339 (2016)CrossRef
83.
go back to reference Zhu, X., Liu, B., Li, L., Wu, L., Chen, S., Huang, L., et al.: A micromilled microgrid sensor with delaminated MXene-bismuth nanocomposite assembly for simultaneous electrochemical detection of lead(II), cadmium(II) and zinc(II). Microchim. Acta. 186 (2019) Zhu, X., Liu, B., Li, L., Wu, L., Chen, S., Huang, L., et al.: A micromilled microgrid sensor with delaminated MXene-bismuth nanocomposite assembly for simultaneous electrochemical detection of lead(II), cadmium(II) and zinc(II). Microchim. Acta. 186 (2019)
84.
go back to reference Song, D.D., Jiang, X.Y., Li, Y.S., Lu, X., Luan, S.R., Wang, Y.Z., et al.: Metal—organic frameworks-derived MnO2/Mn3O4 microcuboids with hierarchically ordered nanosheets and Ti3C2 MXene/Au NPs composites for electrochemical pesticide detection. J. Hazard. Mater. 373, 367–376 (2019)CrossRef Song, D.D., Jiang, X.Y., Li, Y.S., Lu, X., Luan, S.R., Wang, Y.Z., et al.: Metal—organic frameworks-derived MnO2/Mn3O4 microcuboids with hierarchically ordered nanosheets and Ti3C2 MXene/Au NPs composites for electrochemical pesticide detection. J. Hazard. Mater. 373, 367–376 (2019)CrossRef
85.
go back to reference Kim, S.J., Koh, H.J., Ren, C.E., Kwon, O., Maleski, K., Cho, S.Y., et al.: Metallic Ti3C2TX MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986–993 (2018)CrossRef Kim, S.J., Koh, H.J., Ren, C.E., Kwon, O., Maleski, K., Cho, S.Y., et al.: Metallic Ti3C2TX MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986–993 (2018)CrossRef
86.
go back to reference Yu, X.F., Li, Y.C., Cheng, J.B., Liu, Z.B., Li, Q.Z., Li, W.Z., et al.: Monolayer Ti2CO2: a promising dandidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl. Mater. Interfaces. 7, 13707–13713 (2015b)CrossRef Yu, X.F., Li, Y.C., Cheng, J.B., Liu, Z.B., Li, Q.Z., Li, W.Z., et al.: Monolayer Ti2CO2: a promising dandidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl. Mater. Interfaces. 7, 13707–13713 (2015b)CrossRef
87.
go back to reference Xiao, B., Li, Y.C., Yu, X.F., Cheng, J.B.: MXenes: Reusable materials for NH3 sensor or capturer by controlling the charge injection. Sens. Actuat. B-Chem. 235, 103–109 (2016)CrossRef Xiao, B., Li, Y.C., Yu, X.F., Cheng, J.B.: MXenes: Reusable materials for NH3 sensor or capturer by controlling the charge injection. Sens. Actuat. B-Chem. 235, 103–109 (2016)CrossRef
88.
go back to reference Lee, E., Mohammadi, A.V., Prorok, B.C., Yoon, Y.S., Beidaghi, M., Kim, D.J.: Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces. 9, 37184–37190 (2017)CrossRef Lee, E., Mohammadi, A.V., Prorok, B.C., Yoon, Y.S., Beidaghi, M., Kim, D.J.: Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces. 9, 37184–37190 (2017)CrossRef
89.
go back to reference Anasori, B., Lukatskaya, M.R., Gogotsi, Y.: 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017)CrossRef Anasori, B., Lukatskaya, M.R., Gogotsi, Y.: 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017)CrossRef
90.
go back to reference Yang, Z.J., Liu, A., Wang, C.L., Liu, F.M., He, J.M., Li, S.Q., et al.: Improvement of gas and humidity sensing properties of organ-like MXene by alkaline treatment. ACS Sens. 4, 1261–1269 (2019)CrossRef Yang, Z.J., Liu, A., Wang, C.L., Liu, F.M., He, J.M., Li, S.Q., et al.: Improvement of gas and humidity sensing properties of organ-like MXene by alkaline treatment. ACS Sens. 4, 1261–1269 (2019)CrossRef
91.
go back to reference Sun, S.B., Wang, M.W., Chang, X.T., Jiang, Y.C., Zhang, D.Z., Wang, D.S., et al.: W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit. Sens. Actuat. B-Chem. 304, 127274 (2020)CrossRef Sun, S.B., Wang, M.W., Chang, X.T., Jiang, Y.C., Zhang, D.Z., Wang, D.S., et al.: W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit. Sens. Actuat. B-Chem. 304, 127274 (2020)CrossRef
92.
go back to reference Lee, E., VahidMohammadi, A., Yoon, Y.S., Beidaghi, M., Kim, D.J.: Two-dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases. ACS Sens. 4, 1603–1611 (2019)CrossRef Lee, E., VahidMohammadi, A., Yoon, Y.S., Beidaghi, M., Kim, D.J.: Two-dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases. ACS Sens. 4, 1603–1611 (2019)CrossRef
93.
go back to reference Cai, Y.C., Shen, J., Ge, G., Zhang, Y.Z., Jin, W.Q., Huang, W., et al.: Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 12, 56–62 (2018)CrossRef Cai, Y.C., Shen, J., Ge, G., Zhang, Y.Z., Jin, W.Q., Huang, W., et al.: Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 12, 56–62 (2018)CrossRef
94.
go back to reference Barlian, A.A., Park, W.T., Mallon, J.R., Jr., Rastegar, A.J., Pruitt, B.L.: Review: Semiconductor piezoresistance for microsystems. Proc. IEEE 97, 513–552 (2009)CrossRef Barlian, A.A., Park, W.T., Mallon, J.R., Jr., Rastegar, A.J., Pruitt, B.L.: Review: Semiconductor piezoresistance for microsystems. Proc. IEEE 97, 513–552 (2009)CrossRef
95.
go back to reference Ma, Y.N., Liu, N.S., Li, L.Y., Hu, X.K., Zou, Z.G., Wang, J.B., et al.: A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 8, 1207 (2017)CrossRef Ma, Y.N., Liu, N.S., Li, L.Y., Hu, X.K., Zou, Z.G., Wang, J.B., et al.: A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 8, 1207 (2017)CrossRef
96.
go back to reference Tan, J., Wang, Y.H., Wang, Z.T., He, X.J., Liu, Y.L., Wang, B., et al.: Large out-of-plane piezoelectricity of oxygen functionalized MXenes for ultrathin piezoelectric cantilevers and diaphragms. Nano Energy. 65, 104058 (2019)CrossRef Tan, J., Wang, Y.H., Wang, Z.T., He, X.J., Liu, Y.L., Wang, B., et al.: Large out-of-plane piezoelectricity of oxygen functionalized MXenes for ultrathin piezoelectric cantilevers and diaphragms. Nano Energy. 65, 104058 (2019)CrossRef
97.
go back to reference Xue, Q., Zhang, H.J., Zhu, M.S., Pei, Z.X., Li, H.F., Wang, Z.F., et al.: Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv. Mater. 29, 1604847 (2017)CrossRef Xue, Q., Zhang, H.J., Zhu, M.S., Pei, Z.X., Li, H.F., Wang, Z.F., et al.: Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv. Mater. 29, 1604847 (2017)CrossRef
98.
go back to reference Huang, C.C., Yang, Z.S., Lee, K.H., Chang, H.T.: Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew. Chem-Int. Ed. 46, 6824–6828 (2007)CrossRef Huang, C.C., Yang, Z.S., Lee, K.H., Chang, H.T.: Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew. Chem-Int. Ed. 46, 6824–6828 (2007)CrossRef
99.
go back to reference Guo, Y.M., Zhang, L.F., Zhang, S.S., Yang, Y., Chen, X.H., Zhang, M.C.: Fluorescent carbon nanoparticles for the fluorescent detection of metal ions. Biosens. Bioelectron. 63, 61–71 (2015)CrossRef Guo, Y.M., Zhang, L.F., Zhang, S.S., Yang, Y., Chen, X.H., Zhang, M.C.: Fluorescent carbon nanoparticles for the fluorescent detection of metal ions. Biosens. Bioelectron. 63, 61–71 (2015)CrossRef
100.
go back to reference Kumar, D., Talreja, N.: Nickel nanoparticles-doped rhodamine grafted carbon nanofibers as colorimetric probe: naked eye detection and highly sensitive measurement of aqueous Cr3+ and Pb2+. Korean J. Chem. Eng. 36, 126–135 (2019)CrossRef Kumar, D., Talreja, N.: Nickel nanoparticles-doped rhodamine grafted carbon nanofibers as colorimetric probe: naked eye detection and highly sensitive measurement of aqueous Cr3+ and Pb2+. Korean J. Chem. Eng. 36, 126–135 (2019)CrossRef
101.
go back to reference Chen, X., Sun, X.K., Xu, W., Pan, G.C., Zhou, D.L., Zhu, J.Y., et al.: Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor. Nanoscale. 10, 1111–1118 (2018)CrossRef Chen, X., Sun, X.K., Xu, W., Pan, G.C., Zhou, D.L., Zhu, J.Y., et al.: Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor. Nanoscale. 10, 1111–1118 (2018)CrossRef
102.
go back to reference Zhang, Q.X., Wang, F., Zhang, H.X., Zhang, Y.Y., Liu, M.L., Liu, Y.: Universal Ti3C2 MXenes based self-standard ratiometric fluorescence resonance energy transfer platform for highly sensitive detection of exosomes. Anal. Chem. 90, 12737–12744 (2018)CrossRef Zhang, Q.X., Wang, F., Zhang, H.X., Zhang, Y.Y., Liu, M.L., Liu, Y.: Universal Ti3C2 MXenes based self-standard ratiometric fluorescence resonance energy transfer platform for highly sensitive detection of exosomes. Anal. Chem. 90, 12737–12744 (2018)CrossRef
103.
go back to reference Fang, Y.F., Yang, X.C., Chen, T., Xu, G.F., Liu, M.L., Liu, J.Q., et al.: Two-dimensional titanium carbide (MXene)-based solid-state electrochemiluminescent sensor for label-free single-nucleotide mismatch discrimination in human urine. Sens. Actuators B-Chem. 263, 400–407 (2018)CrossRef Fang, Y.F., Yang, X.C., Chen, T., Xu, G.F., Liu, M.L., Liu, J.Q., et al.: Two-dimensional titanium carbide (MXene)-based solid-state electrochemiluminescent sensor for label-free single-nucleotide mismatch discrimination in human urine. Sens. Actuators B-Chem. 263, 400–407 (2018)CrossRef
104.
go back to reference Guan, Q.W., Ma, J.F., Yang, W.J., Zhang, R., Zhang, X.J., Dong, X.X., et al.: Highly fluorescent Ti3C2 MXene quantum dots for macrophage labeling and Cu2+ ion sensing. Nanoscale. 11, 14123–14133 (2019)CrossRef Guan, Q.W., Ma, J.F., Yang, W.J., Zhang, R., Zhang, X.J., Dong, X.X., et al.: Highly fluorescent Ti3C2 MXene quantum dots for macrophage labeling and Cu2+ ion sensing. Nanoscale. 11, 14123–14133 (2019)CrossRef
105.
go back to reference Jhon, Y.I., Seo, M., Jhon, Y.M.: First-principles study of a MXene terahertz detector. Nanoscale. 10, 69–75 (2018)CrossRef Jhon, Y.I., Seo, M., Jhon, Y.M.: First-principles study of a MXene terahertz detector. Nanoscale. 10, 69–75 (2018)CrossRef
106.
go back to reference Satheeshkumar, E., Makaryan, T., Melikyan, A., Minassian, H., Gogotsi, Y., Yoshimura, M.: One-step solution processing of Ag, Au and Pd@MXene hybrids for SERS. Sci. Rep. 6, 32049 (2016)CrossRef Satheeshkumar, E., Makaryan, T., Melikyan, A., Minassian, H., Gogotsi, Y., Yoshimura, M.: One-step solution processing of Ag, Au and Pd@MXene hybrids for SERS. Sci. Rep. 6, 32049 (2016)CrossRef
107.
go back to reference Sarycheva, A., Makaryan, T., Maleski, K., Satheeshkumar, E., Melikyan, A., Minassian, H., et al.: Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate. J. Phys. Chem. C 121, 19983–19988 (2017)CrossRef Sarycheva, A., Makaryan, T., Maleski, K., Satheeshkumar, E., Melikyan, A., Minassian, H., et al.: Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate. J. Phys. Chem. C 121, 19983–19988 (2017)CrossRef
108.
go back to reference Soundiraraju, B., George, B.K.: Two-dimensional titanium nitride (Ti2N) MXene: Synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano 11, 8892–8900 (2017)CrossRef Soundiraraju, B., George, B.K.: Two-dimensional titanium nitride (Ti2N) MXene: Synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano 11, 8892–8900 (2017)CrossRef
109.
go back to reference Ma, T.Y., Cao, J.L., Jaroniec, M., Qiao, S.Z.: Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem. Int. Ed. 55, 1138–1142 (2016)CrossRef Ma, T.Y., Cao, J.L., Jaroniec, M., Qiao, S.Z.: Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem. Int. Ed. 55, 1138–1142 (2016)CrossRef
110.
go back to reference Wang, H., Peng, R., Hood, Z.D., Naguib, M., Adhikari, S.P., Wu, Z.L.: Titania composites with 2 D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. Chemsuschem 9, 1490–1497 (2016)CrossRef Wang, H., Peng, R., Hood, Z.D., Naguib, M., Adhikari, S.P., Wu, Z.L.: Titania composites with 2 D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. Chemsuschem 9, 1490–1497 (2016)CrossRef
111.
go back to reference Ling, C.Y., Shi, L., Ouyang, Y.X., Chen, Q., Wang, J.L.: Transition metal-promoted V2CO2 (MXenes): a new and highly active catalyst for hydrogen evolution reaction. Adv. Sci. 3, 1600180 (2016)CrossRef Ling, C.Y., Shi, L., Ouyang, Y.X., Chen, Q., Wang, J.L.: Transition metal-promoted V2CO2 (MXenes): a new and highly active catalyst for hydrogen evolution reaction. Adv. Sci. 3, 1600180 (2016)CrossRef
112.
go back to reference Zhang, Z.W., Li, H.N., Zou, G.D., Fernandez, C., Liu, B.Z., Zhang, Q.R., et al.: Self-reduction synthesis of new MXene/Ag composites with unexpected electrocatalytic activity. ACS Sustain. Chem. Eng. 4, 6763–6771 (2016)CrossRef Zhang, Z.W., Li, H.N., Zou, G.D., Fernandez, C., Liu, B.Z., Zhang, Q.R., et al.: Self-reduction synthesis of new MXene/Ag composites with unexpected electrocatalytic activity. ACS Sustain. Chem. Eng. 4, 6763–6771 (2016)CrossRef
113.
go back to reference Xie, X.H., Chen, S.G., Ding, W., Nie, Y., Wei, Z.D.: An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction. Chem. Commun. 49, 10112–10114 (2013)CrossRef Xie, X.H., Chen, S.G., Ding, W., Nie, Y., Wei, Z.D.: An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction. Chem. Commun. 49, 10112–10114 (2013)CrossRef
114.
go back to reference Yu, X.L., Wang, T., Yin, W.C., Zhang, Y.H.: Ti3C2 MXene nanoparticles modified metal oxide composites for enhanced photoelectrochemical water splitting. Int. J. Hydrogen Energy 44, 2704–2710 (2019)CrossRef Yu, X.L., Wang, T., Yin, W.C., Zhang, Y.H.: Ti3C2 MXene nanoparticles modified metal oxide composites for enhanced photoelectrochemical water splitting. Int. J. Hydrogen Energy 44, 2704–2710 (2019)CrossRef
115.
go back to reference Zhang, X., Zhang, Z.H., Li, J.L., Zhao, X.D., Wu, D.H., Zhou, Z.: Ti2CO2 MXene: a highly active and selective photocatalyst for CO2 reduction. J. Mater. Chem. A. 5, 12899–12903 (2017)CrossRef Zhang, X., Zhang, Z.H., Li, J.L., Zhao, X.D., Wu, D.H., Zhou, Z.: Ti2CO2 MXene: a highly active and selective photocatalyst for CO2 reduction. J. Mater. Chem. A. 5, 12899–12903 (2017)CrossRef
116.
go back to reference Low, J.X., Zhang, L.Y., Tong, T., Shen, B.J., Yu, J.G.: TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J. Catal. 361, 255–266 (2018)CrossRef Low, J.X., Zhang, L.Y., Tong, T., Shen, B.J., Yu, J.G.: TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J. Catal. 361, 255–266 (2018)CrossRef
117.
go back to reference Cao, S.W., Shen, B.J., Tong, T., Fu, J.W., Yu, J.G.: 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Func. Mater. 28, 1800136 (2018)CrossRef Cao, S.W., Shen, B.J., Tong, T., Fu, J.W., Yu, J.G.: 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Func. Mater. 28, 1800136 (2018)CrossRef
118.
go back to reference Cao, M.S., Cai, Y.Z., He, P., Shu, J.C., Cao, W.Q., Yuan, J.: 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019)CrossRef Cao, M.S., Cai, Y.Z., He, P., Shu, J.C., Cao, W.Q., Yuan, J.: 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019)CrossRef
119.
go back to reference Fan, Z., Wang, D., Yuan, Y., Wang, Y., Cheng, Z., Liu, Y., et al.: A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 381 (2020) Fan, Z., Wang, D., Yuan, Y., Wang, Y., Cheng, Z., Liu, Y., et al.: A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 381 (2020)
120.
go back to reference Hu, S.J., Li, S.B., Xu, W.M., Zhang, J., Zhou, Y., Cheng, Z.X.: Rapid preparation, thermal stability and electromagnetic interference shielding properties of two-dimensional Ti3C2 MXene. Ceram. Int. 45, 19902–19909 (2019)CrossRef Hu, S.J., Li, S.B., Xu, W.M., Zhang, J., Zhou, Y., Cheng, Z.X.: Rapid preparation, thermal stability and electromagnetic interference shielding properties of two-dimensional Ti3C2 MXene. Ceram. Int. 45, 19902–19909 (2019)CrossRef
121.
go back to reference Jin, X., Wang, J., Dai, L., Liu, X., Li, L., Yang, Y., et al.: Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 380 (2020) Jin, X., Wang, J., Dai, L., Liu, X., Li, L., Yang, Y., et al.: Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 380 (2020)
122.
go back to reference Kumar, S., Kumar, P., Singh, N., Verma, V.: Steady microwave absorption behavior of two-dimensional metal carbide MXene and Polyaniline composite in X-band. J. Magn. Magn. Mater. 488 (2019) Kumar, S., Kumar, P., Singh, N., Verma, V.: Steady microwave absorption behavior of two-dimensional metal carbide MXene and Polyaniline composite in X-band. J. Magn. Magn. Mater. 488 (2019)
123.
go back to reference Li, Y., Tian, X., Gao, S.P., Jing, L., Li, K.R., Yang, H.T., et al.: Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 1907451 (2019) Li, Y., Tian, X., Gao, S.P., Jing, L., Li, K.R., Yang, H.T., et al.: Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 1907451 (2019)
124.
go back to reference Lipton, J., Weng, G.M., Alhabeb, M., Maleski, K., Antonio, F., Kong, J., et al.: Mechanically strong and electrically conductive multilayer MXene nanocomposites. Nanoscale. 11, 20295–20300 (2019)CrossRef Lipton, J., Weng, G.M., Alhabeb, M., Maleski, K., Antonio, F., Kong, J., et al.: Mechanically strong and electrically conductive multilayer MXene nanocomposites. Nanoscale. 11, 20295–20300 (2019)CrossRef
125.
go back to reference Liu, J., Liu, Z., Zhang, H.B., Chen, W., Zhao, Z., Wang, Q.W., et al.: Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater.1901094 (2019) Liu, J., Liu, Z., Zhang, H.B., Chen, W., Zhao, Z., Wang, Q.W., et al.: Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater.1901094 (2019)
126.
go back to reference Luo, J.Q., Zhao, S., Zhang, H.B., Deng, Z., Li, L., Yu, Z.Z.: Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos. Sci. Technol. 182 (2019) Luo, J.Q., Zhao, S., Zhang, H.B., Deng, Z., Li, L., Yu, Z.Z.: Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos. Sci. Technol. 182 (2019)
127.
go back to reference Sambyal, P., Iqbal, A., Hong, J., Kim, H., Kim, M.K., Hong, S.M., et al.: Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces. 11, 38046–38054 (2019)CrossRef Sambyal, P., Iqbal, A., Hong, J., Kim, H., Kim, M.K., Hong, S.M., et al.: Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces. 11, 38046–38054 (2019)CrossRef
128.
go back to reference Wu, X., Han, B., Zhang, H.B., Xie, X., Tu, T., Zhang, Y., et al.: Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381 (2020) Wu, X., Han, B., Zhang, H.B., Xie, X., Tu, T., Zhang, Y., et al.: Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381 (2020)
129.
go back to reference Shahzad, F., Alhabeb, M., Hatter, C.B., Anasori, B., Soon, M.H., Koo, C.M., et al.: Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016)CrossRef Shahzad, F., Alhabeb, M., Hatter, C.B., Anasori, B., Soon, M.H., Koo, C.M., et al.: Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016)CrossRef
130.
go back to reference Liu, J., Zhang, H.B., Sun, R.H., Liu, Y.F., Liu, Z.S., Zhou, A.G., et al.: Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017)CrossRef Liu, J., Zhang, H.B., Sun, R.H., Liu, Y.F., Liu, Z.S., Zhou, A.G., et al.: Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017)CrossRef
131.
go back to reference Han, M.K., Yin, X.W., Wu, H., Hou, Z.X., Song, C.Q., Li, X.L., et al.: Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces. 8, 21011–21019 (2016)CrossRef Han, M.K., Yin, X.W., Wu, H., Hou, Z.X., Song, C.Q., Li, X.L., et al.: Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces. 8, 21011–21019 (2016)CrossRef
132.
go back to reference Bian, R.J., He, G.L., Zhi, W.Q., Xiang, S.L., Wang, T.W., Cai, D.Y.: Ultralight MXene-based aerogels with high electromagnetic interference shielding performance. J. Mater. Chem. C. 7, 474–478 (2019)CrossRef Bian, R.J., He, G.L., Zhi, W.Q., Xiang, S.L., Wang, T.W., Cai, D.Y.: Ultralight MXene-based aerogels with high electromagnetic interference shielding performance. J. Mater. Chem. C. 7, 474–478 (2019)CrossRef
133.
go back to reference He, P., Wang, X.X., Cai, Y.Z., Shu, J.C., Zhao, Q.L., Yuan, J., et al.: Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding. Nanoscale. (2019) (in press) He, P., Wang, X.X., Cai, Y.Z., Shu, J.C., Zhao, Q.L., Yuan, J., et al.: Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding. Nanoscale. (2019) (in press)
134.
go back to reference Li, X.L., Yin, X.W., Liang, S., Li, M.H., Cheng, L.F., Zhang, L.T.: 2D carbide MXene Ti2CTX as a novel high-performance electromagnetic interference shielding material. Carbon 146, 210–217 (2019)CrossRef Li, X.L., Yin, X.W., Liang, S., Li, M.H., Cheng, L.F., Zhang, L.T.: 2D carbide MXene Ti2CTX as a novel high-performance electromagnetic interference shielding material. Carbon 146, 210–217 (2019)CrossRef
135.
go back to reference Han, M.K., Yin, X.W., Hantanasirisakul, K., Li, X.L., Iqbal, A., Hatter, C.B., et al.: Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Opt. Mater. 7, 1900267 (2019)CrossRef Han, M.K., Yin, X.W., Hantanasirisakul, K., Li, X.L., Iqbal, A., Hatter, C.B., et al.: Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Opt. Mater. 7, 1900267 (2019)CrossRef
136.
go back to reference Sun, R.H., Zhang, H.B., Liu, J., Xie, X., Yang, R., Li, Y., et al.: Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Func. Mater. 27, 1702807 (2017)CrossRef Sun, R.H., Zhang, H.B., Liu, J., Xie, X., Yang, R., Li, Y., et al.: Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Func. Mater. 27, 1702807 (2017)CrossRef
137.
go back to reference Liu, R.T., Miao, M., Li, Y.H., Zhang, J.F., Cao, S.M., Feng, X.: Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces. 10, 44787–44795 (2018)CrossRef Liu, R.T., Miao, M., Li, Y.H., Zhang, J.F., Cao, S.M., Feng, X.: Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces. 10, 44787–44795 (2018)CrossRef
138.
go back to reference Qing, Y.C., Zhou, W.C., Luo, F., Zhu, D.M.: Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram. Int. 42, 16412–16416 (2016)CrossRef Qing, Y.C., Zhou, W.C., Luo, F., Zhu, D.M.: Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram. Int. 42, 16412–16416 (2016)CrossRef
139.
go back to reference Wang, Q.W., Zhang, H.B., Liu, J., Zhao, S., Xie, X., Liu, L.X., et al.: Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and Joule heating performances. Adv. Func. Mater. 29, 1806819 (2019)CrossRef Wang, Q.W., Zhang, H.B., Liu, J., Zhao, S., Xie, X., Liu, L.X., et al.: Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and Joule heating performances. Adv. Func. Mater. 29, 1806819 (2019)CrossRef
140.
go back to reference Xu, H.L., Yin, X.W., Li, X.L., Li, M.H., Liang, S., Zhang, L.T., et al.: Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces. 11, 10198–10207 (2019)CrossRef Xu, H.L., Yin, X.W., Li, X.L., Li, M.H., Liang, S., Zhang, L.T., et al.: Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces. 11, 10198–10207 (2019)CrossRef
141.
go back to reference Raagulan, K., Braveenth, R., Jang, H.J., Lee, Y.S., Yang, C.M., Kim, B.M., et al.: Electromagnetic shielding by MXene-graphene-PVDF composite with hydrophobic, lightweight and flexible graphene coated fabric. Materials. 11, 1803 (2018)CrossRef Raagulan, K., Braveenth, R., Jang, H.J., Lee, Y.S., Yang, C.M., Kim, B.M., et al.: Electromagnetic shielding by MXene-graphene-PVDF composite with hydrophobic, lightweight and flexible graphene coated fabric. Materials. 11, 1803 (2018)CrossRef
142.
go back to reference Zhao, S., Zhang, H.B., Luo, J.Q., Wang, Q.W., Xu, B., Hong, S., et al.: Highly electrically conductive three-dimensional Ti3C2TX MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12, 11193–11202 (2018)CrossRef Zhao, S., Zhang, H.B., Luo, J.Q., Wang, Q.W., Xu, B., Hong, S., et al.: Highly electrically conductive three-dimensional Ti3C2TX MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12, 11193–11202 (2018)CrossRef
143.
go back to reference Weng, G.M., Li, J.Y., Alhabeb, M., Karpovich, C., Wang, H., Lipton, J., et al.: Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Func. Mater. 28, 1803360 (2018)CrossRef Weng, G.M., Li, J.Y., Alhabeb, M., Karpovich, C., Wang, H., Lipton, J., et al.: Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Func. Mater. 28, 1803360 (2018)CrossRef
144.
go back to reference Cao, W.T., Chen, F.F., Zhu, Y.J., Zhang, Y.G., Jiang, Y.Y., Ma, M.G., et al.: Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12, 4583–4593 (2018)CrossRef Cao, W.T., Chen, F.F., Zhu, Y.J., Zhang, Y.G., Jiang, Y.Y., Ma, M.G., et al.: Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12, 4583–4593 (2018)CrossRef
145.
go back to reference Cui, C., Xiang, C., Geng, L., Lai, X.X., Guo, R.H., Zhang, Y., et al.: Flexible and ultrathin electrospun regenerate cellulose nanofibers and d-Ti3C2Tx (MXene) composite film for electromagnetic interference shielding. J. Alloy. Compd. 788, 1246–1255 (2019)CrossRef Cui, C., Xiang, C., Geng, L., Lai, X.X., Guo, R.H., Zhang, Y., et al.: Flexible and ultrathin electrospun regenerate cellulose nanofibers and d-Ti3C2Tx (MXene) composite film for electromagnetic interference shielding. J. Alloy. Compd. 788, 1246–1255 (2019)CrossRef
146.
go back to reference Wang, L., Qiu, H., Song, P., Zhang, Y.L., Lu, Y.J., Liang, C.B., et al.: 3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties. Compos. Part A-Appl. Sci. Manufs. 123, 293–300 (2019)CrossRef Wang, L., Qiu, H., Song, P., Zhang, Y.L., Lu, Y.J., Liang, C.B., et al.: 3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties. Compos. Part A-Appl. Sci. Manufs. 123, 293–300 (2019)CrossRef
147.
go back to reference Liu, P.J., Ng, V.M.H., Yao, Z.J., Zhou, J.T., Kong, L.B.: Ultrasmall Fe3O4 nanoparticles on MXenes with high microwave absorption performance. Mater. Lett. 229, 286–289 (2018)CrossRef Liu, P.J., Ng, V.M.H., Yao, Z.J., Zhou, J.T., Kong, L.B.: Ultrasmall Fe3O4 nanoparticles on MXenes with high microwave absorption performance. Mater. Lett. 229, 286–289 (2018)CrossRef
148.
go back to reference Liu, P.J., Yao, Z.J., Ng, V.M.H., Zhou, J.T., Kong, L.B., Yue, K.: Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Compos. Part A-Appl. Sci. Manuf. 115, 371–382 (2018)CrossRef Liu, P.J., Yao, Z.J., Ng, V.M.H., Zhou, J.T., Kong, L.B., Yue, K.: Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Compos. Part A-Appl. Sci. Manuf. 115, 371–382 (2018)CrossRef
149.
go back to reference Feng, W.L., Luo, H., Wang, Y., Zeng, S.F., Tan, Y.Q., Deng, L.W., et al.: Mxenes derived laminated and magnetic composites with excellent microwave absorbing performance. Sci. Rep. 9, 3957 (2019)CrossRef Feng, W.L., Luo, H., Wang, Y., Zeng, S.F., Tan, Y.Q., Deng, L.W., et al.: Mxenes derived laminated and magnetic composites with excellent microwave absorbing performance. Sci. Rep. 9, 3957 (2019)CrossRef
150.
go back to reference Yang, H.B., Dai, J.J., Liu, X., Lin, Y., Wang, J.J., Wang, L., et al.: Layered PVB/Ba3Co2Fe24O41/Ti3C2 Mxene composite: Enhanced electromagnetic wave absorption properties with high impedance match in a wide frequency range. Mater. Chem. Phys. 200, 179–186 (2017)CrossRef Yang, H.B., Dai, J.J., Liu, X., Lin, Y., Wang, J.J., Wang, L., et al.: Layered PVB/Ba3Co2Fe24O41/Ti3C2 Mxene composite: Enhanced electromagnetic wave absorption properties with high impedance match in a wide frequency range. Mater. Chem. Phys. 200, 179–186 (2017)CrossRef
151.
go back to reference Zhao, G.L., Lv, H.P., Zhou, Y., Zheng, X.T., Wu, C., Xu, C.: Self-assembled sandwich-like MXene-derived nanocomposites for enhanced electromagnetic wave absorption. ACS Appl. Mater. Interfaces. 10, 42925–42932 (2018)CrossRef Zhao, G.L., Lv, H.P., Zhou, Y., Zheng, X.T., Wu, C., Xu, C.: Self-assembled sandwich-like MXene-derived nanocomposites for enhanced electromagnetic wave absorption. ACS Appl. Mater. Interfaces. 10, 42925–42932 (2018)CrossRef
152.
go back to reference Liu, L.X., Chen, W., Zhang, H.B., Wang, Q.W., Guan, F. and Yu, Z.Z.: Flexible and multifunctional silk textiles with biomimetic leaf‐like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self‐derived hydrophobicity. Advanced Functional Materials. 29,1905197 (2019) Liu, L.X., Chen, W., Zhang, H.B., Wang, Q.W., Guan, F. and Yu, Z.Z.: Flexible and multifunctional silk textiles with biomimetic leaf‐like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self‐derived hydrophobicity. Advanced Functional Materials. 29,1905197 (2019)
153.
go back to reference Weng, C.X., Wang, G.R., Dai, Z.H., Pei, Y.M., Liu, L.Q., Zhang, Z.: Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding. Nanoscale. 11, 22804–22812 (2019)CrossRef Weng, C.X., Wang, G.R., Dai, Z.H., Pei, Y.M., Liu, L.Q., Zhang, Z.: Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding. Nanoscale. 11, 22804–22812 (2019)CrossRef
154.
go back to reference Bai, Y.L., Zhou, K., Srikanth, N., Pang, J.H.L., He, X.D., Wang, R.G.: Dependence of elastic and optical properties on surface terminated groups in two-dimensional MXene monolayers: a first-principles study. RSC Advances. 6, 35731–35739 (2016)CrossRef Bai, Y.L., Zhou, K., Srikanth, N., Pang, J.H.L., He, X.D., Wang, R.G.: Dependence of elastic and optical properties on surface terminated groups in two-dimensional MXene monolayers: a first-principles study. RSC Advances. 6, 35731–35739 (2016)CrossRef
155.
go back to reference Berdiyorov, G.R.: Optical properties of functionalized Ti3C2T2 (T = F, O, OH) MXene: First-principles calculations. AIP Adv. 6, 055105 (2016)CrossRef Berdiyorov, G.R.: Optical properties of functionalized Ti3C2T2 (T = F, O, OH) MXene: First-principles calculations. AIP Adv. 6, 055105 (2016)CrossRef
156.
go back to reference Halim, J., Lukatskaya, M.R., Cook, K.M., Lu, J., Smith, C.R., Näslund, L.A., et al.: Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26, 2374–2381 (2014)CrossRef Halim, J., Lukatskaya, M.R., Cook, K.M., Lu, J., Smith, C.R., Näslund, L.A., et al.: Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26, 2374–2381 (2014)CrossRef
157.
go back to reference Dillon, A.D., Ghidiu, M.J., Krick, A.L., Griggs, J., May, S.J., Gogotsi, Y., et al.: Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Func. Mater. 26, 4162–4168 (2016)CrossRef Dillon, A.D., Ghidiu, M.J., Krick, A.L., Griggs, J., May, S.J., Gogotsi, Y., et al.: Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Func. Mater. 26, 4162–4168 (2016)CrossRef
158.
go back to reference Hantanasirisakul, K., Zhao, M.Q., Urbankowski, P., Halim, J., Anasori, B., Kota, S., et al.: Fabrication of Ti3C2Tx MXene transparent thin films with tunable opoelectronic properties. Adv. Electro. Mater. 2, 1600050 (2016)CrossRef Hantanasirisakul, K., Zhao, M.Q., Urbankowski, P., Halim, J., Anasori, B., Kota, S., et al.: Fabrication of Ti3C2Tx MXene transparent thin films with tunable opoelectronic properties. Adv. Electro. Mater. 2, 1600050 (2016)CrossRef
159.
go back to reference Mariano, M., Mashtalir, O., Antonio, F.Q., Ryu, W.H., Deng, B.C., Xia, F.N., et al.: Solution-processed titanium carbide MXene films examined as highly transparent conductors. Nanoscale. 8, 16371–16378 (2016)CrossRef Mariano, M., Mashtalir, O., Antonio, F.Q., Ryu, W.H., Deng, B.C., Xia, F.N., et al.: Solution-processed titanium carbide MXene films examined as highly transparent conductors. Nanoscale. 8, 16371–16378 (2016)CrossRef
160.
go back to reference Ali, A., Belaidi, A., Ali, S., Helal, M.I., Mahmoud, K.A.: Transparent and conductive Ti3C2Tx (MXene) thin film fabrication by electrohydrodynamic atomization technique. J. Mater. Sci.: Mater. Electron. 27, 5440–5445 (2016) Ali, A., Belaidi, A., Ali, S., Helal, M.I., Mahmoud, K.A.: Transparent and conductive Ti3C2Tx (MXene) thin film fabrication by electrohydrodynamic atomization technique. J. Mater. Sci.: Mater. Electron. 27, 5440–5445 (2016)
161.
go back to reference Aïssa, B., Ali, A., Mahmoud, K.A., Haddad, T., Nedil, M.: Transport properties of a highly conductive 2D Ti3C2Tx MXene/graphene composite. Appl. Phys. Lett. 109, 043109 (2016)CrossRef Aïssa, B., Ali, A., Mahmoud, K.A., Haddad, T., Nedil, M.: Transport properties of a highly conductive 2D Ti3C2Tx MXene/graphene composite. Appl. Phys. Lett. 109, 043109 (2016)CrossRef
162.
go back to reference Lipatov, A., Alhabeb, M., Lukatskaya, M.R., Boson, A., Gogotsi, Y., Sinitskii, A.: Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Advanced Electronic Materials. 2, 1600255 (2016)CrossRef Lipatov, A., Alhabeb, M., Lukatskaya, M.R., Boson, A., Gogotsi, Y., Sinitskii, A.: Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Advanced Electronic Materials. 2, 1600255 (2016)CrossRef
163.
go back to reference Ying, G.B., Dillon, A.D., Fafarman, A.T., Barsoum, M.W.: Transparent, conductive solution processed spincast 2D Ti2CTx (MXene) films. Materials Research Letters. 5, 391–398 (2017)CrossRef Ying, G.B., Dillon, A.D., Fafarman, A.T., Barsoum, M.W.: Transparent, conductive solution processed spincast 2D Ti2CTx (MXene) films. Materials Research Letters. 5, 391–398 (2017)CrossRef
164.
go back to reference Ying, G.B., Kota, S., Dillon, A.D., Fafarman, A.T., Barsoum, M.W.: Conductive transparent V2CTx (MXene) films. Flatchem. 8, 25–30 (2018)CrossRef Ying, G.B., Kota, S., Dillon, A.D., Fafarman, A.T., Barsoum, M.W.: Conductive transparent V2CTx (MXene) films. Flatchem. 8, 25–30 (2018)CrossRef
165.
go back to reference Kim, S.J., Choi, J., Maleski, K., Hantanasirisakul, K., Jung, H.T., Gogotsi, Y., et al.: Interfacial assembly of ultrathin, functional MXene films. ACS Appl. Mater. Interfaces. 11, 32320–32327 (2019)CrossRef Kim, S.J., Choi, J., Maleski, K., Hantanasirisakul, K., Jung, H.T., Gogotsi, Y., et al.: Interfacial assembly of ultrathin, functional MXene films. ACS Appl. Mater. Interfaces. 11, 32320–32327 (2019)CrossRef
166.
go back to reference Li, W.Y., Song, Z.Q., Zhong, J.M., Qian, J., Tan, Z.Y., Wu, X.Y., et al.: Multilayer-structured transparent MXene/PVDF film with excellent dielectric and energy storage performance. J. Mater. Chem. C. 7, 10371–10378 (2019)CrossRef Li, W.Y., Song, Z.Q., Zhong, J.M., Qian, J., Tan, Z.Y., Wu, X.Y., et al.: Multilayer-structured transparent MXene/PVDF film with excellent dielectric and energy storage performance. J. Mater. Chem. C. 7, 10371–10378 (2019)CrossRef
167.
go back to reference Liu, J., Zhang, L., Li, C.Z.: Highly stable, transparent, and conductive electrode of solution-processed silver nanowire-Mxene for flexible alternating-current electroluminescent devices. Ind. Eng. Chem. Res. 58, 21485–21492 (2019)CrossRef Liu, J., Zhang, L., Li, C.Z.: Highly stable, transparent, and conductive electrode of solution-processed silver nanowire-Mxene for flexible alternating-current electroluminescent devices. Ind. Eng. Chem. Res. 58, 21485–21492 (2019)CrossRef
Metadata
Title
Other Applications
Authors
Zhuohao Xiao
Shuangchen Ruan
Ling Bing Kong
Wenxiu Que
Kun Zhou
Yin Liu
Tianshu Zhang
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-59373-5_5