Skip to main content
Top

2019 | OriginalPaper | Chapter

5. Other Existing Carbon Forms

Authors : Boris Ildusovich Kharisov, Oxana Vasilievna Kharissova

Published in: Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this section, we show several other carbon allotropes, from those rare as, for example, lonsdaleite to common glassy carbon and “carbon black,” xerogels, or hydrogels. In case of carbide- and MOF-derived carbons (relatively new research areas, especially the last one), the production methods vary and structures of formed carbons can be distinct (carbon nanotubes, fullerene- or onion-like nanostructures, nanocrystalline graphitic carbon, amorphous carbon, nanodiamonds, etc.); this is not a special structural type of carbon.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The GC image above (left) is reproduced with permission of Taylor & Francis (P.J.F. Harris. Fullerene-related structure of commercial glassy carbons. Philosophical Magazine, 2004, 84(29), 3159–3167).
 
2
IUPAC: “Glass-like carbon cannot be described as amorphous carbon because it consists of two-dimensional structural elements and does not exhibit ‘dangling’ bonds” (IUPAC Goldbook, http://​goldbook.​iupac.​org/​html/​G/​G02639.​html).
 
3
The main reason for the impressive chemical resistance is a consequence of the disordered structure and the inability to form intercalation compounds. This gives rise to high resistance to corrosion by acid and alkaline agents and melts.
 
4
Indeed, polymer-derived pyrolytic carbons are highly desirable building blocks for high-strength low-density ceramic meta-materials (J. Mater. Sci. 2017, 52, 13799–13811).
 
5
See also the section below about carbon allotropes in the environment.
 
6
Reproduced with permission of MDPI (Gels, 2016, 2, 4).
 
7
This method is mentioned in a variety of reports on carbon aerogels. Other precursors of carbon aerogels are phenolic–furfural and melamine–formaldehyde aerogels, among others (Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, 2011, New York, NY.).
 
8
The image above is reproduced with permission of Wiley (Advanced Science, 2017, 4(7), 1700059).
 
9
For example, the hydrogen storage at ambient pressure for TiC-CDCs varied from 1.4 wt.% to 2.8 wt.%. The highest methane uptake was 46 cm3/g (3.1 wt.%) at 25 °C and atmospheric pressure (carbon, 44(12), 2489–2497 (2006)).
 
10
Graphane image is reproduced with permission of APS Physics (Phys. Rev. B, 2007, 75, 153,401).
 
11
Reproduced with permission of the Royal Society of Chemistry (RSC Adv., 2016, 6, 32,740–32,745).
 
12
Reproduced from https://​newatlas.​com/​q-carbon-new-phase-of-carbon/​40668/​ (Q-carbon film covered with microdiamonds).
 
Literature
1.
go back to reference M.P. Manoharan, H. Lee, R. Rajagopalan, H.C. Foley, M.A. Haque, Elastic properties of 4–6 nm-thick glassy carbon thin films. Nanoscale Res. Lett. 5, 14 (2009)CrossRef M.P. Manoharan, H. Lee, R. Rajagopalan, H.C. Foley, M.A. Haque, Elastic properties of 4–6 nm-thick glassy carbon thin films. Nanoscale Res. Lett. 5, 14 (2009)CrossRef
2.
go back to reference K. Jurkiewicz, S. Duber, H.E. Fischerd, A. Burian, Modelling of glass-like carbon structure and its experimental verification by neutron and X-ray diffraction. J. Appl. Crystallogr. 50, 36–48 (2017)CrossRef K. Jurkiewicz, S. Duber, H.E. Fischerd, A. Burian, Modelling of glass-like carbon structure and its experimental verification by neutron and X-ray diffraction. J. Appl. Crystallogr. 50, 36–48 (2017)CrossRef
3.
go back to reference O.J.A. Schueller, S.T. Brittain, G.M. Whitesides, Fabrication of glassy carbon microstructures by pyrolysis of microfabricated polymeric precursors. Adv. Mater. 9(6), 477–480 (1997)CrossRef O.J.A. Schueller, S.T. Brittain, G.M. Whitesides, Fabrication of glassy carbon microstructures by pyrolysis of microfabricated polymeric precursors. Adv. Mater. 9(6), 477–480 (1997)CrossRef
4.
go back to reference J. Bauer, A. Schroer, R. Schwaiger, O. Kraft, Approaching theoretical strength in glassy carbon nanolattices. Nat. Mater. 15, 438–443 (2016)CrossRef J. Bauer, A. Schroer, R. Schwaiger, O. Kraft, Approaching theoretical strength in glassy carbon nanolattices. Nat. Mater. 15, 438–443 (2016)CrossRef
5.
go back to reference C.M. Lentz, B.A. Samuel, H.C. Foley, M.A. Haque, Synthesis and characterization of glassy carbon nanowires. J. Nanomater 2011, (2011). Article ID 129298, 8 pp C.M. Lentz, B.A. Samuel, H.C. Foley, M.A. Haque, Synthesis and characterization of glassy carbon nanowires. J. Nanomater 2011, (2011). Article ID 129298, 8 pp
6.
go back to reference A.F. Goncharov, Graphite at high pressures: Pseudomelting at 44 GPa. Sov. Phys. JETP 71(5), 1025–1027 (1990) A.F. Goncharov, Graphite at high pressures: Pseudomelting at 44 GPa. Sov. Phys. JETP 71(5), 1025–1027 (1990)
7.
go back to reference M. Yao, X. Fan, W. Zhang, et al., Uniaxial-stress-driven transformation in cold compressed glassy carbon. Appl. Phys. Lett. 111, 101901 (2017)CrossRef M. Yao, X. Fan, W. Zhang, et al., Uniaxial-stress-driven transformation in cold compressed glassy carbon. Appl. Phys. Lett. 111, 101901 (2017)CrossRef
8.
go back to reference M. Hu, J. He, Z. Zhao, et al., Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network. Sci. Adv. 3, e1603213 (2017)CrossRef M. Hu, J. He, Z. Zhao, et al., Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network. Sci. Adv. 3, e1603213 (2017)CrossRef
9.
go back to reference J. Csontos, Z. Toth, Z. Pápa, et al., Periodic structure formation and surface morphology evolution of glassy carbon surfaces applying 35-fs–200-ps laser pulses. Appl. Phys. A Mater. Sci. Process. 122, 593 (2016)CrossRef J. Csontos, Z. Toth, Z. Pápa, et al., Periodic structure formation and surface morphology evolution of glassy carbon surfaces applying 35-fs–200-ps laser pulses. Appl. Phys. A Mater. Sci. Process. 122, 593 (2016)CrossRef
10.
go back to reference M. Collaud Coen, Functionalization of graphite, glassy carbon, and polymer surfaces with highly oxidized sulfur species by plasma treatments. J. Appl. Phys. 92, 5077–5083 (2002)CrossRef M. Collaud Coen, Functionalization of graphite, glassy carbon, and polymer surfaces with highly oxidized sulfur species by plasma treatments. J. Appl. Phys. 92, 5077–5083 (2002)CrossRef
11.
go back to reference I. Emahi, M.P. Mitchell, D.A. Baum, Electrochemistry of pyrroloquinoline quinone (PQQ) on multi-walled carbon nanotube-modified glassy carbon electrodes in biological buffers. J. Electrochem. Soc. 164(3), H3097–H3102 (2017)CrossRef I. Emahi, M.P. Mitchell, D.A. Baum, Electrochemistry of pyrroloquinoline quinone (PQQ) on multi-walled carbon nanotube-modified glassy carbon electrodes in biological buffers. J. Electrochem. Soc. 164(3), H3097–H3102 (2017)CrossRef
12.
go back to reference F. Campanhã Vicentini, B.C. Janegitz, C.M.A. Brett, O. Fatibello-Filho, Tyrosinase biosensor based on a glassy carbon electrode modified with multiwalled carbon nanotubes and 1-butyl-3-methylimidazolium chloride within a dihexadecylphosphate film. Sens. Actuators B Chem. 188, 1101–1108 (2013)CrossRef F. Campanhã Vicentini, B.C. Janegitz, C.M.A. Brett, O. Fatibello-Filho, Tyrosinase biosensor based on a glassy carbon electrode modified with multiwalled carbon nanotubes and 1-butyl-3-methylimidazolium chloride within a dihexadecylphosphate film. Sens. Actuators B Chem. 188, 1101–1108 (2013)CrossRef
13.
go back to reference F. Chekin, S. Bagheri, S. Bee Abd Hamid, Glassy carbon electrodes modified with gelatin functionalized reduced graphene oxide nanosheet for determination of gallic acid. Bull. Mater. Sci. 38(7), 1711–1716 (2015)CrossRef F. Chekin, S. Bagheri, S. Bee Abd Hamid, Glassy carbon electrodes modified with gelatin functionalized reduced graphene oxide nanosheet for determination of gallic acid. Bull. Mater. Sci. 38(7), 1711–1716 (2015)CrossRef
14.
go back to reference S. Robin Nxele, P. Mashazi, T. Nyokong, Surface functionalization of glassy carbon electrodes via adsorption, electrografting and click chemistry using quantum dots and alkynyl substituted phthalocyanines: a brief review. Fourth Conference on Sensors, MEMS, and Electro-Optic Systems, 2017, Proceedings Volume 10036, 100360D S. Robin Nxele, P. Mashazi, T. Nyokong, Surface functionalization of glassy carbon electrodes via adsorption, electrografting and click chemistry using quantum dots and alkynyl substituted phthalocyanines: a brief review. Fourth Conference on Sensors, MEMS, and Electro-Optic Systems, 2017, Proceedings Volume 10036, 100360D
15.
go back to reference M.L. Valenzuela, R. Cisternas, P. Jara-Ulloa, L. Rodriguez, Electroanalytical analysis of glassy carbon electrode modified with COOH- and NO2- functionalized polyspyrophosphazenes. J. Chil. Chem. Soc. 62(2), 3515–3518 (2017)CrossRef M.L. Valenzuela, R. Cisternas, P. Jara-Ulloa, L. Rodriguez, Electroanalytical analysis of glassy carbon electrode modified with COOH- and NO2- functionalized polyspyrophosphazenes. J. Chil. Chem. Soc. 62(2), 3515–3518 (2017)CrossRef
16.
go back to reference I. Kocak, Characterization of the reduction of oxygen at anthraquinone-modified glassy carbon and highly oriented pyrolytic graphite electrodes. Anal. Lett. 50(9), 1448–1462 (2017)CrossRef I. Kocak, Characterization of the reduction of oxygen at anthraquinone-modified glassy carbon and highly oriented pyrolytic graphite electrodes. Anal. Lett. 50(9), 1448–1462 (2017)CrossRef
17.
go back to reference J. Lv, Y. Tang, L. Teng, D. Tang, J. Zhang, Aminobenzene sulfonic acid-functionalized carbon nanotubes on glassy carbon electrodes for probing traces of mercury(II). J. Serb. Chem. Soc. 82(1), 73–82 (2017)CrossRef J. Lv, Y. Tang, L. Teng, D. Tang, J. Zhang, Aminobenzene sulfonic acid-functionalized carbon nanotubes on glassy carbon electrodes for probing traces of mercury(II). J. Serb. Chem. Soc. 82(1), 73–82 (2017)CrossRef
18.
go back to reference P. Actis, G. Caulliez, G. Shul, et al., Functionalization of glassy carbon with diazonium salts in ionic liquids. Langmuir 24(12), 6327–6333 (2008)CrossRef P. Actis, G. Caulliez, G. Shul, et al., Functionalization of glassy carbon with diazonium salts in ionic liquids. Langmuir 24(12), 6327–6333 (2008)CrossRef
19.
go back to reference J. Liu, S. Dong, Grafting of diaminoalkane on glassy carbon surface and its functionalization. Electrochem. Commun. 2(10), 707–712 (2000)CrossRef J. Liu, S. Dong, Grafting of diaminoalkane on glassy carbon surface and its functionalization. Electrochem. Commun. 2(10), 707–712 (2000)CrossRef
20.
go back to reference M. Balooei, J. Bakhsh Raoof, F. Chekin, R. Ojani, Novel sensor based on 3-mercaptopropyltrimethoxysilane functionalized carbon nanotubes modified glassy carbon electrode for electrochemical determination of Cefixime. Anal. Bioanal. Electrochem. 9(3), 266–276 (2017) M. Balooei, J. Bakhsh Raoof, F. Chekin, R. Ojani, Novel sensor based on 3-mercaptopropyltrimethoxysilane functionalized carbon nanotubes modified glassy carbon electrode for electrochemical determination of Cefixime. Anal. Bioanal. Electrochem. 9(3), 266–276 (2017)
21.
go back to reference R. Sakthivel, S. Dhanalakshmi, S.-M. Chen, et al., A novel flakes-like structure of molybdenum disulphide modified glassy carbon electrode for the efficient electrochemical detection of dopamine. Int. J. Electrochem. Sci. 12, 9288–9300 (2017)CrossRef R. Sakthivel, S. Dhanalakshmi, S.-M. Chen, et al., A novel flakes-like structure of molybdenum disulphide modified glassy carbon electrode for the efficient electrochemical detection of dopamine. Int. J. Electrochem. Sci. 12, 9288–9300 (2017)CrossRef
22.
go back to reference J. Marwan, T. Addou, D. Bélanger, Functionalization of glassy carbon electrodes with metal-based species. Chem. Mater. 17(9), 2395–2403 (2005)CrossRef J. Marwan, T. Addou, D. Bélanger, Functionalization of glassy carbon electrodes with metal-based species. Chem. Mater. 17(9), 2395–2403 (2005)CrossRef
24.
go back to reference C. Canales, L. Gidi, G. Ramírez, Electrochemical activity of modified glassy carbon electrodes with covalent bonds towards molecular oxygen reduction. Int. J. Electrochem. Sci. 10, 1684–1695 (2015) C. Canales, L. Gidi, G. Ramírez, Electrochemical activity of modified glassy carbon electrodes with covalent bonds towards molecular oxygen reduction. Int. J. Electrochem. Sci. 10, 1684–1695 (2015)
25.
go back to reference J. Miliki, N. Markicevi, A. Jovic, R. Hercigonja, B. Šljuki, Glass-like carbon, pyrolytic graphite or nanostructured carbon for electrochemical sensing of bismuth ion? Process. Appl. Ceramics 10(2), 87–95 (2016)CrossRef J. Miliki, N. Markicevi, A. Jovic, R. Hercigonja, B. Šljuki, Glass-like carbon, pyrolytic graphite or nanostructured carbon for electrochemical sensing of bismuth ion? Process. Appl. Ceramics 10(2), 87–95 (2016)CrossRef
26.
go back to reference Y.E. Seidel, R.W. Lindström, Z. Jusys, et al., Stability of nanostructured Pt/glassy carbon electrodes prepared by colloidal lithography. J. Electrochem. Soc. 155(3), K50–K58 (2008)CrossRef Y.E. Seidel, R.W. Lindström, Z. Jusys, et al., Stability of nanostructured Pt/glassy carbon electrodes prepared by colloidal lithography. J. Electrochem. Soc. 155(3), K50–K58 (2008)CrossRef
27.
go back to reference Y. Jalit, M.C. Rodríguez, M.D. Rubianes, S. Bollo, G.A. Rivas, Glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in polylysine. Electroanalysis 20(15), 1623–1631 (2008)CrossRef Y. Jalit, M.C. Rodríguez, M.D. Rubianes, S. Bollo, G.A. Rivas, Glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in polylysine. Electroanalysis 20(15), 1623–1631 (2008)CrossRef
28.
go back to reference S.E. Subramani, T.V. Vineesh, T. Priya, V. Kathikeyan, N. Thinakaran, Electrochemical detection of Pb(II) ions using glassy carbon electrode surface modified by functionalized mesoporous carbon. Sens. Lett. 15(4), 320–327 (2017)CrossRef S.E. Subramani, T.V. Vineesh, T. Priya, V. Kathikeyan, N. Thinakaran, Electrochemical detection of Pb(II) ions using glassy carbon electrode surface modified by functionalized mesoporous carbon. Sens. Lett. 15(4), 320–327 (2017)CrossRef
29.
go back to reference C. Sun, L. Rotundo, C. Garino, Electrochemical CO2 reduction at glassy carbon electrodes functionalized by MnI and ReI organometallic complexes. ChemPhysChem 18(22), 3219–3229 (2017)CrossRef C. Sun, L. Rotundo, C. Garino, Electrochemical CO2 reduction at glassy carbon electrodes functionalized by MnI and ReI organometallic complexes. ChemPhysChem 18(22), 3219–3229 (2017)CrossRef
30.
go back to reference A. Braun, J. Ilavsky, S. Seifert, Highly porous activated glassy carbon film sandwich structure for electrochemical energy storage in ultracapacitor applications: Study of the porous film structure and gradient. J. Mater. Res. 25(8), 1532–1540 (2010)CrossRef A. Braun, J. Ilavsky, S. Seifert, Highly porous activated glassy carbon film sandwich structure for electrochemical energy storage in ultracapacitor applications: Study of the porous film structure and gradient. J. Mater. Res. 25(8), 1532–1540 (2010)CrossRef
31.
go back to reference V.D. Chekanova, A.S. Fialkov, Vitreous carbon (preparation, properties, and applications). Russ. Chem. Rev. 1971(40), 413–428 (1971)CrossRef V.D. Chekanova, A.S. Fialkov, Vitreous carbon (preparation, properties, and applications). Russ. Chem. Rev. 1971(40), 413–428 (1971)CrossRef
32.
go back to reference C. Garion, Mechanical properties for reliability analysis of structures in glassy carbon. World J. Mech. 4, 79–89 (2014)CrossRef C. Garion, Mechanical properties for reliability analysis of structures in glassy carbon. World J. Mech. 4, 79–89 (2014)CrossRef
33.
go back to reference N. Komarevskiy, V. Shklover, L. Braginsky, C. Hafner, J. Lawson, Potential of glassy carbon and silicon carbide photonic structures as electromagnetic radiation shields for atmospheric re-entry. Opt. Express 20(13), 14189–14200 (2012)CrossRef N. Komarevskiy, V. Shklover, L. Braginsky, C. Hafner, J. Lawson, Potential of glassy carbon and silicon carbide photonic structures as electromagnetic radiation shields for atmospheric re-entry. Opt. Express 20(13), 14189–14200 (2012)CrossRef
34.
go back to reference J. Myalski, B. Hekner, A. Posmyk, The influence of glassy carbon on tribological properties in metal – ceramic composites with skeleton reinforcement. Additional Conferences (Device Packaging, HiTEC, HiTEN, & CICMT), 2015, Vol. 2015, No. CICMT, (2015) pp. 000121–000124CrossRef J. Myalski, B. Hekner, A. Posmyk, The influence of glassy carbon on tribological properties in metal – ceramic composites with skeleton reinforcement. Additional Conferences (Device Packaging, HiTEC, HiTEN, & CICMT), 2015, Vol. 2015, No. CICMT, (2015) pp. 000121–000124CrossRef
35.
go back to reference Y. Koval, A. Geworski, K. Gieb, I. Lazareva, P. Müller, Fabrication and characterization of glassy carbon membranes. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 32, 042001 (2014)CrossRef Y. Koval, A. Geworski, K. Gieb, I. Lazareva, P. Müller, Fabrication and characterization of glassy carbon membranes. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 32, 042001 (2014)CrossRef
36.
go back to reference M. Vomero, E. Castagnola, F. Ciarpella, E. Maggiolini, N. Goshi, E. Zucchini, S. Carli, L. Fadiga, S. Kassegne, D. Ricci, Highly stable glassy carbon interfaces for long-term neural stimulation and low-noise recording of brain activity. Sci. Rep. 7, 40332 (2017)CrossRef M. Vomero, E. Castagnola, F. Ciarpella, E. Maggiolini, N. Goshi, E. Zucchini, S. Carli, L. Fadiga, S. Kassegne, D. Ricci, Highly stable glassy carbon interfaces for long-term neural stimulation and low-noise recording of brain activity. Sci. Rep. 7, 40332 (2017)CrossRef
38.
go back to reference S. Dadkhah, E. Ziaei, A. Mehdinia, T. Baradaran Kayyal, A. Jabbari, A glassy carbon electrode modified with amino-functionalized graphene oxide and molecularly imprinted polymer for electrochemical sensing of bisphenol a. Microchim. Acta 183(6), 1933–1941 (2016)CrossRef S. Dadkhah, E. Ziaei, A. Mehdinia, T. Baradaran Kayyal, A. Jabbari, A glassy carbon electrode modified with amino-functionalized graphene oxide and molecularly imprinted polymer for electrochemical sensing of bisphenol a. Microchim. Acta 183(6), 1933–1941 (2016)CrossRef
39.
go back to reference J. Bakhsh Raoof, R. Ojani, M. Baghayeri, M. Amiri-Aref, Application of a glassy carbon electrode modified with functionalized multi-walled carbon nanotubes as a sensor device for simultaneous determination of acetaminophen and tyramine. Anal. Methods 4, 1579–1587 (2012)CrossRef J. Bakhsh Raoof, R. Ojani, M. Baghayeri, M. Amiri-Aref, Application of a glassy carbon electrode modified with functionalized multi-walled carbon nanotubes as a sensor device for simultaneous determination of acetaminophen and tyramine. Anal. Methods 4, 1579–1587 (2012)CrossRef
41.
go back to reference C.M. Long, M.A. Nascarella, P.A. Valberg, Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions. Environ. Pollut. 181, 271–286 (2013)CrossRef C.M. Long, M.A. Nascarella, P.A. Valberg, Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions. Environ. Pollut. 181, 271–286 (2013)CrossRef
45.
go back to reference N. Probst, E. Grivei, Structure and electrical properties of carbon black. Carbon 40, 201–205 (2002)CrossRef N. Probst, E. Grivei, Structure and electrical properties of carbon black. Carbon 40, 201–205 (2002)CrossRef
46.
go back to reference M. Ozawa, E. Ōsawa, Carbon blacks as the source materials for carbon nanotechnology. In: “Carbon Nanotechnology”, 2006, L. Dai. (Ed.), Chapt. 6, p. 127-151. Elsevier: DordrechtCrossRef M. Ozawa, E. Ōsawa, Carbon blacks as the source materials for carbon nanotechnology. In: “Carbon Nanotechnology”, 2006, L. Dai. (Ed.), Chapt. 6, p. 127-151. Elsevier: DordrechtCrossRef
48.
go back to reference S. Lim, X. Faïn, P. Gino, et al., Black carbon variability since preindustrial times in the Eastern part of Europe reconstructed from Mt. Elbrus, Caucasus, icecores. Atmos. Chem. Phys. 17, 3489–3505 (2017)CrossRef S. Lim, X. Faïn, P. Gino, et al., Black carbon variability since preindustrial times in the Eastern part of Europe reconstructed from Mt. Elbrus, Caucasus, icecores. Atmos. Chem. Phys. 17, 3489–3505 (2017)CrossRef
49.
go back to reference C. Garland, S. Delapena, R. Prasad, C. L’Orange, D. Alexander, M. Johnson, Black carbon cookstove emissions: A field assessment of 19 stove/fuel combinations. Atmos. Environ. 169, 140–149 (2017)CrossRef C. Garland, S. Delapena, R. Prasad, C. L’Orange, D. Alexander, M. Johnson, Black carbon cookstove emissions: A field assessment of 19 stove/fuel combinations. Atmos. Environ. 169, 140–149 (2017)CrossRef
50.
go back to reference A. Guha, B. De Kumar, P. Dha, et al., Seasonal characteristics of aerosol black carbon in relation to long range transport over Tripura in Northeast India. Aerosol Air Qual. Res. 15, 786–798 (2015)CrossRef A. Guha, B. De Kumar, P. Dha, et al., Seasonal characteristics of aerosol black carbon in relation to long range transport over Tripura in Northeast India. Aerosol Air Qual. Res. 15, 786–798 (2015)CrossRef
51.
go back to reference W. Min Hao, A. Petkov, B.L. Nordgre, et al., Daily black carbón emissions from fires in northern Eurasia for 2002–2015. Geosci. Model Dev. 9, 4461–4474 (2016)CrossRef W. Min Hao, A. Petkov, B.L. Nordgre, et al., Daily black carbón emissions from fires in northern Eurasia for 2002–2015. Geosci. Model Dev. 9, 4461–4474 (2016)CrossRef
52.
go back to reference Ö. Gustafssona, V. Ramanathan, Convergence on climate warming by black carbon aerosols. PNAS 113(16), 4243–4245 (2016)CrossRef Ö. Gustafssona, V. Ramanathan, Convergence on climate warming by black carbon aerosols. PNAS 113(16), 4243–4245 (2016)CrossRef
53.
go back to reference V. Ramanathan, G. Carmichael, Global and regional climate changes due to black carbon. Nat. Geosci. 1, 221–227 (2008)CrossRef V. Ramanathan, G. Carmichael, Global and regional climate changes due to black carbon. Nat. Geosci. 1, 221–227 (2008)CrossRef
54.
go back to reference O.A. Al-Hartomy, F. Al-Solamy, A. Al-Ghamdi, et al., Volume 2011. Article ID 521985, 8 pp (2011) O.A. Al-Hartomy, F. Al-Solamy, A. Al-Ghamdi, et al., Volume 2011. Article ID 521985, 8 pp (2011)
56.
go back to reference G. Datt, C. Kotabage, A.C. Abhyankar, Ferromagnetic resonance of NiCoFe2O4 nanoparticles and microwave absorption properties of flexible NiCoFe2O4–carbon black/poly(vinyl alcohol) composites. Phys. Chem. Chem. Phys. 19, 20699–20712 (2017)CrossRef G. Datt, C. Kotabage, A.C. Abhyankar, Ferromagnetic resonance of NiCoFe2O4 nanoparticles and microwave absorption properties of flexible NiCoFe2O4–carbon black/poly(vinyl alcohol) composites. Phys. Chem. Chem. Phys. 19, 20699–20712 (2017)CrossRef
57.
go back to reference Q. Zhang, B.-Y. Zhang, Z.-X. Guo, J. Yu, Tunable electrical conductivity of carbon-black-filled ternary polymer blends by constructing a hierarchical structure. Polymers 9, 404, 11 pp (2017)CrossRef Q. Zhang, B.-Y. Zhang, Z.-X. Guo, J. Yu, Tunable electrical conductivity of carbon-black-filled ternary polymer blends by constructing a hierarchical structure. Polymers 9, 404, 11 pp (2017)CrossRef
58.
go back to reference S.K.H. Gulrez, S. Al-Assaf, G.O. Phillips. Hydrogels: methods of preparation, characterisation and applications. in Progress in Molecular and Environmental Bioengineering. From Analysis and Modeling to Technology Applications. ed. by A. Carpi, ISBN: 978-953-307-268-5 (InTech, London, UK, 2011) S.K.H. Gulrez, S. Al-Assaf, G.O. Phillips. Hydrogels: methods of preparation, characterisation and applications. in Progress in Molecular and Environmental Bioengineering. From Analysis and Modeling to Technology Applications. ed. by A. Carpi, ISBN: 978-953-307-268-5 (InTech, London, UK, 2011)
59.
go back to reference L. Zuo, Y. Zhang, L. Zhang, Y.-E. Miao, W. Fan, T. Liu, Polymer/carbon-based hybrid aerogels: Preparation, properties and applications. Materials 8, 6806–6848 (2015)CrossRef L. Zuo, Y. Zhang, L. Zhang, Y.-E. Miao, W. Fan, T. Liu, Polymer/carbon-based hybrid aerogels: Preparation, properties and applications. Materials 8, 6806–6848 (2015)CrossRef
60.
go back to reference J. Shen, D.Y. Guan, Preparation and application of carbon aerogels, in Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies, ed. by M. Aegerter, N. Leventis, M. Koebel, (Springer, New York, 2011) J. Shen, D.Y. Guan, Preparation and application of carbon aerogels, in Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies, ed. by M. Aegerter, N. Leventis, M. Koebel, (Springer, New York, 2011)
61.
go back to reference X. Yao, Y. Zhao, Three-dimensional porous graphene networks and hybrids for Lithium-ion batteries and supercapacitors. Chem 2, 171–200 (2017)CrossRef X. Yao, Y. Zhao, Three-dimensional porous graphene networks and hybrids for Lithium-ion batteries and supercapacitors. Chem 2, 171–200 (2017)CrossRef
62.
go back to reference K.-S. Lin, Y.-J. Mai, S.-W. Chiu, J.-H. Yang, S.L I. Chan. Synthesis and rage. J. Nanomater. 2012, Article ID 201584, 9 pp (2012) K.-S. Lin, Y.-J. Mai, S.-W. Chiu, J.-H. Yang, S.L I. Chan. Synthesis and rage. J. Nanomater. 2012, Article ID 201584, 9 pp (2012)
63.
go back to reference K. Kreek, K. Kriis, B. Maaten, et al., Organic and carbon aerogels containing rare-earth metals: Their properties and application as catalysts. J. Non-Cryst. Solids 404, 43–48 (2014)CrossRef K. Kreek, K. Kriis, B. Maaten, et al., Organic and carbon aerogels containing rare-earth metals: Their properties and application as catalysts. J. Non-Cryst. Solids 404, 43–48 (2014)CrossRef
64.
go back to reference C. Macias, G. Rasines, T.E. García, et al., Synthesis of porous and mechanically compliant carbon aerogels using conductive and structural additives. Gels 2, 4 (2016)CrossRef C. Macias, G. Rasines, T.E. García, et al., Synthesis of porous and mechanically compliant carbon aerogels using conductive and structural additives. Gels 2, 4 (2016)CrossRef
65.
go back to reference B. Xue, M. Qin, J. Wu, et al., Electroresponsive supramolecular graphene oxide hydrogels for active Bacteria adsorption and removal. ACS Appl. Mater. Interfaces 8(24), 15120–15127 (2016)CrossRef B. Xue, M. Qin, J. Wu, et al., Electroresponsive supramolecular graphene oxide hydrogels for active Bacteria adsorption and removal. ACS Appl. Mater. Interfaces 8(24), 15120–15127 (2016)CrossRef
66.
go back to reference C. Shen, E. Barrios, M. McInnis, J. Zuyus, L. Zhai, Fabrication of graphene aerogels with heavily loaded metallic nanoparticles. Micromachines 8, 47 (2017)CrossRef C. Shen, E. Barrios, M. McInnis, J. Zuyus, L. Zhai, Fabrication of graphene aerogels with heavily loaded metallic nanoparticles. Micromachines 8, 47 (2017)CrossRef
67.
go back to reference Y. Liu, H. Wang, D. Lin, J. Zhao, C. Liu, J. Xie, Y. Cui, A Prussian blue route to nitrogen-doped graphene aerogels as efficient electrocatalysts for oxygen reduction with enhanced active site accessibility. Nano Res. 10(4), 1213–1222 (2017)CrossRef Y. Liu, H. Wang, D. Lin, J. Zhao, C. Liu, J. Xie, Y. Cui, A Prussian blue route to nitrogen-doped graphene aerogels as efficient electrocatalysts for oxygen reduction with enhanced active site accessibility. Nano Res. 10(4), 1213–1222 (2017)CrossRef
68.
go back to reference H. Guo, T. Jiao, Q. Zhang, W. Guo, Q. Peng, X. Ya, Preparation of graphene oxide-based hydrogels as efficient dye adsorbents for wastewater treatment. Nanoscale Res. Lett. 10, 272 (2015)CrossRef H. Guo, T. Jiao, Q. Zhang, W. Guo, Q. Peng, X. Ya, Preparation of graphene oxide-based hydrogels as efficient dye adsorbents for wastewater treatment. Nanoscale Res. Lett. 10, 272 (2015)CrossRef
69.
go back to reference Y. Hu, X. Tong, H. Zhuo, et al., 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: An attractive carbon for high-performance supercapacitor electrodes and CO2 adsorption. RSC Adv. 6, 15788–15795 (2016)CrossRef Y. Hu, X. Tong, H. Zhuo, et al., 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: An attractive carbon for high-performance supercapacitor electrodes and CO2 adsorption. RSC Adv. 6, 15788–15795 (2016)CrossRef
70.
go back to reference M. Yu, Y. Han, J. Li, L. Wang, One-step synthesis of sodium carboxymethyl cellulose-derived carbon aerogel/nickel oxide composites for energy storage. Chem. Eng. J. 324, 287–295 (2017)CrossRef M. Yu, Y. Han, J. Li, L. Wang, One-step synthesis of sodium carboxymethyl cellulose-derived carbon aerogel/nickel oxide composites for energy storage. Chem. Eng. J. 324, 287–295 (2017)CrossRef
71.
go back to reference J. Štefelová, M. Mucha, T. Zelenka, Cellulose acetate-based carbon xerogels and cryogels. WIT Transactions on Engineering Sciences 77., WIT Press, 65–75 (2013)CrossRef J. Štefelová, M. Mucha, T. Zelenka, Cellulose acetate-based carbon xerogels and cryogels. WIT Transactions on Engineering Sciences 77., WIT Press, 65–75 (2013)CrossRef
72.
go back to reference P. Hao, Z. Zhao, J. Tian, et al., Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6, 12120–12129 (2014)CrossRef P. Hao, Z. Zhao, J. Tian, et al., Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6, 12120–12129 (2014)CrossRef
73.
go back to reference A. Feaver, S. Sepehri, P. Shamberger, A. Stowe, T. Autrey, G. Cao, Coherent carbon Cryogel-ammonia borane nanocomposites for H2 storage. J. Phys. Chem. B 111, 7469–7472 (2007)CrossRef A. Feaver, S. Sepehri, P. Shamberger, A. Stowe, T. Autrey, G. Cao, Coherent carbon Cryogel-ammonia borane nanocomposites for H2 storage. J. Phys. Chem. B 111, 7469–7472 (2007)CrossRef
74.
go back to reference C. Alegre, D. Sebastián, E. Baquedano, et al., Tailoring Synthesis Conditions of Carbon Xerogels towards Their Utilization as Pt-Catalyst Supports for Oxygen Reduction Reaction (ORR). Catalysts 2, 466–489 (2012)CrossRef C. Alegre, D. Sebastián, E. Baquedano, et al., Tailoring Synthesis Conditions of Carbon Xerogels towards Their Utilization as Pt-Catalyst Supports for Oxygen Reduction Reaction (ORR). Catalysts 2, 466–489 (2012)CrossRef
75.
go back to reference N. Mahata, A.R. Silva, M.F.R. Pereira, C. Freire, B. de Castro, J.L. Figueiredo, Anchoring of a [Mn(salen)Cl] complex onto mesoporous carbon xerogels. J. Colloid Interface Sci. 311, 152–158 (2007)CrossRef N. Mahata, A.R. Silva, M.F.R. Pereira, C. Freire, B. de Castro, J.L. Figueiredo, Anchoring of a [Mn(salen)Cl] complex onto mesoporous carbon xerogels. J. Colloid Interface Sci. 311, 152–158 (2007)CrossRef
76.
go back to reference W. Kicinski, M. Szala, M. Nita, Structurally tailored carbon xerogels produced through a sol–gel process in a water–methanol–inorganic salt solution. J. Sol-Gel Sci. Technol. 58, 102–113 (2011)CrossRef W. Kicinski, M. Szala, M. Nita, Structurally tailored carbon xerogels produced through a sol–gel process in a water–methanol–inorganic salt solution. J. Sol-Gel Sci. Technol. 58, 102–113 (2011)CrossRef
77.
go back to reference W. Xia, B. Qiu, D. Xia, R. Zou, Facile preparation of hierarchically porous carbons from metal-organic gels and their application in energy storage. Sci. Rep. 3, 1935, 7 pp (2013)CrossRef W. Xia, B. Qiu, D. Xia, R. Zou, Facile preparation of hierarchically porous carbons from metal-organic gels and their application in energy storage. Sci. Rep. 3, 1935, 7 pp (2013)CrossRef
78.
go back to reference E. Kowsari, High-performance supercapacitors based on ionic liquids and a graphene nanostructure, in Ionic Liquids – Current State of the Art, (Intech, London, UK, 2015), pp. 505–542 E. Kowsari, High-performance supercapacitors based on ionic liquids and a graphene nanostructure, in Ionic Liquids – Current State of the Art, (Intech, London, UK, 2015), pp. 505–542
79.
go back to reference G. Yushin, A. Nikitin, Y. Gogotsi, Carbide-derived carbon, in Nanomaterials Handbook, (Taylor & Francis Group, Boca Raton, 2006) G. Yushin, A. Nikitin, Y. Gogotsi, Carbide-derived carbon, in Nanomaterials Handbook, (Taylor & Francis Group, Boca Raton, 2006)
80.
go back to reference V. Presser, M. Heon, Y. Gogotsi, Carbide-derived carbons – From porous networks to nanotubes and graphene. Adv. Funct. Mater. 21, 810–833 (2011)CrossRef V. Presser, M. Heon, Y. Gogotsi, Carbide-derived carbons – From porous networks to nanotubes and graphene. Adv. Funct. Mater. 21, 810–833 (2011)CrossRef
81.
go back to reference P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008)CrossRef P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008)CrossRef
82.
go back to reference V. Presser, L. Zhang, J.J. Niu, J. McDonough, C. Perez, H. Fong, Y. Gogotsi, Flexible Nano-felts of carbide-derived carbon with ultra-high power handling capability. Adv. Energy Mater. 1(3), 423–430 (2011)CrossRef V. Presser, L. Zhang, J.J. Niu, J. McDonough, C. Perez, H. Fong, Y. Gogotsi, Flexible Nano-felts of carbide-derived carbon with ultra-high power handling capability. Adv. Energy Mater. 1(3), 423–430 (2011)CrossRef
83.
go back to reference J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous Increase in Carbon Capacitance at Pore Sizes of Less Than 1 Nanometer. Science 313(5794), 1760–1763 (2006)CrossRef J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous Increase in Carbon Capacitance at Pore Sizes of Less Than 1 Nanometer. Science 313(5794), 1760–1763 (2006)CrossRef
84.
go back to reference S.H. Yeon, P. Reddington, Y. Gogotsi, J.E. Fischer, C. Vakifahmetoglu, P. Colombo, Carbide-derived-carbons with hierarchical porosity from a preceramic polymer. Carbon 48, 201–210 (2010)CrossRef S.H. Yeon, P. Reddington, Y. Gogotsi, J.E. Fischer, C. Vakifahmetoglu, P. Colombo, Carbide-derived-carbons with hierarchical porosity from a preceramic polymer. Carbon 48, 201–210 (2010)CrossRef
85.
go back to reference Y. Gogotsi, Not just graphene – The wonderful world of carbon and related nanomaterials. MRS Bull. 40, 1110–1120 (2015)CrossRef Y. Gogotsi, Not just graphene – The wonderful world of carbon and related nanomaterials. MRS Bull. 40, 1110–1120 (2015)CrossRef
86.
go back to reference M. Rose, Y. Korenblit, E. Kockrick, L. Borchard, M. Oschatz, S. Kaskel, G. Yushin, Hierarchical micro-and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors. Small 7(8), 1108–1117 (2011)CrossRef M. Rose, Y. Korenblit, E. Kockrick, L. Borchard, M. Oschatz, S. Kaskel, G. Yushin, Hierarchical micro-and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors. Small 7(8), 1108–1117 (2011)CrossRef
87.
go back to reference R. Dash, J. Chmiola, G. Yushin, Y. Gogotsi, G. Laudisio, J. Singer, J.E. Fischer, S. Kucheyev, Titanium carbide derived Nanoporous carbon for energy-related applications. Carbon 44(12), 2489–2497 (2006)CrossRef R. Dash, J. Chmiola, G. Yushin, Y. Gogotsi, G. Laudisio, J. Singer, J.E. Fischer, S. Kucheyev, Titanium carbide derived Nanoporous carbon for energy-related applications. Carbon 44(12), 2489–2497 (2006)CrossRef
88.
go back to reference M. Sevilla, R. Mokaya, Activation of carbide derived carbons: A route to materials with enhanced gas and energy storage properties. J. Mater. Chem. 21, 4727–4732 (2011)CrossRef M. Sevilla, R. Mokaya, Activation of carbide derived carbons: A route to materials with enhanced gas and energy storage properties. J. Mater. Chem. 21, 4727–4732 (2011)CrossRef
89.
go back to reference E.N. Hoffman, G. Yushin, B.G. Wendler, M.W. Barsouma, Y. Gogotsi, Carbide-derived carbon membrane. Mater. Chem. Phys. 112(2), 587–591 (2008)CrossRef E.N. Hoffman, G. Yushin, B.G. Wendler, M.W. Barsouma, Y. Gogotsi, Carbide-derived carbon membrane. Mater. Chem. Phys. 112(2), 587–591 (2008)CrossRef
90.
go back to reference C. Portet, D. Kazachkin, S. Osswald, Y. Gogotsi, E. Borguet, Impact of synthesis conditions on surface chemistry and structure of carbide-derived carbons. Thermochim. Acta 497, 137–142 (2010)CrossRef C. Portet, D. Kazachkin, S. Osswald, Y. Gogotsi, E. Borguet, Impact of synthesis conditions on surface chemistry and structure of carbide-derived carbons. Thermochim. Acta 497, 137–142 (2010)CrossRef
91.
go back to reference B. Krüner, C. Odenwald, A. Tolosa, A. Schreiber, M. Aslan, G. Kickelbick, V. Presser, Carbide-derived carbon beads with tunable nanopores from continuously produced polysilsesquioxanes for supercapacitor electrodes. Sustainable Energy Fuels 1, 1588–1600 (2017)CrossRef B. Krüner, C. Odenwald, A. Tolosa, A. Schreiber, M. Aslan, G. Kickelbick, V. Presser, Carbide-derived carbon beads with tunable nanopores from continuously produced polysilsesquioxanes for supercapacitor electrodes. Sustainable Energy Fuels 1, 1588–1600 (2017)CrossRef
92.
go back to reference S. Ishikawa, T. Saito, K. Kuwahara, Carbon Materials with Nano-sized Pores Derived from Carbides. Sei Technical Review 82, 152–157 (2016) S. Ishikawa, T. Saito, K. Kuwahara, Carbon Materials with Nano-sized Pores Derived from Carbides. Sei Technical Review 82, 152–157 (2016)
93.
go back to reference M.R. Lukatskaya, J. Halim, B. Dyatkin, M. Naguib, Y.S. Buranova, M.W. Barsoum, Y. Gogotsi, Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases. Angew. Chem. 126, 4977–4980 (2014)CrossRef M.R. Lukatskaya, J. Halim, B. Dyatkin, M. Naguib, Y.S. Buranova, M.W. Barsoum, Y. Gogotsi, Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases. Angew. Chem. 126, 4977–4980 (2014)CrossRef
94.
go back to reference H.S. Cheng, M.R. Shen, C.L. Mak, P.K. Lim. Liquid phase electrochemical route to carbon nanotubes at room temperature. Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, January 18–21, 2006, Zhuhai, China. pp.484–487 (2006) H.S. Cheng, M.R. Shen, C.L. Mak, P.K. Lim. Liquid phase electrochemical route to carbon nanotubes at room temperature. Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, January 18–21, 2006, Zhuhai, China. pp.484–487 (2006)
95.
go back to reference A. Shawky, S. Yasuda, K. Murakoshi, Room-temperature synthesis of single-wall carbon nanotubes by an electrochemical process. Carbon 50, 4184–4191 (2012)CrossRef A. Shawky, S. Yasuda, K. Murakoshi, Room-temperature synthesis of single-wall carbon nanotubes by an electrochemical process. Carbon 50, 4184–4191 (2012)CrossRef
96.
go back to reference S.K. Mandal, S. Hussain, A.K. Pal, Growth mechanism of carbon nanotubes deposited by electrochemical technique. Ind. J. Pure Appl. Phys. 43, 765–771 (2005) S.K. Mandal, S. Hussain, A.K. Pal, Growth mechanism of carbon nanotubes deposited by electrochemical technique. Ind. J. Pure Appl. Phys. 43, 765–771 (2005)
97.
go back to reference K. Yamagiwa, J. Kuwano, Synthesis of highly aligned carbon nanotubes by one-step liquid-phase process: Effects of carbon sources on morphology of carbon nanotubes. Jap. J. Appl. Phys. 56, 06GE05 (2017)CrossRef K. Yamagiwa, J. Kuwano, Synthesis of highly aligned carbon nanotubes by one-step liquid-phase process: Effects of carbon sources on morphology of carbon nanotubes. Jap. J. Appl. Phys. 56, 06GE05 (2017)CrossRef
98.
go back to reference L. Zhang, X. Qina, G. Shaoa, Z. Ma, S. Liu, C. He, A new route for preparation of titanium carbide derived carbon and its performance for supercapacitors. Mater. Lett. 122, 78–81 (2014)CrossRef L. Zhang, X. Qina, G. Shaoa, Z. Ma, S. Liu, C. He, A new route for preparation of titanium carbide derived carbon and its performance for supercapacitors. Mater. Lett. 122, 78–81 (2014)CrossRef
99.
go back to reference A.H. Farmahini, D.S. Sholl, S.K. Bhatia, Fluorinated carbide-derived carbon: More hydrophilic, yet apparently more hydrophobic. J. Am. Chem. Soc. 137(18), 5969–5979 (2015)CrossRef A.H. Farmahini, D.S. Sholl, S.K. Bhatia, Fluorinated carbide-derived carbon: More hydrophilic, yet apparently more hydrophobic. J. Am. Chem. Soc. 137(18), 5969–5979 (2015)CrossRef
100.
go back to reference B. Li, H.-M. Wen, W. Zhou, J.Q. Xu, B. Chen, Porous metal-organic frameworks: Promising materials for methane storage. Chem 1, 557–580 (2016)CrossRef B. Li, H.-M. Wen, W. Zhou, J.Q. Xu, B. Chen, Porous metal-organic frameworks: Promising materials for methane storage. Chem 1, 557–580 (2016)CrossRef
101.
go back to reference S.K. Bhatia, T.X. Nguyen, Potential of silicon carbide-derived carbon for carbon capture. Ind. Eng. Chem. Res. 50, 10380–10383 (2011)CrossRef S.K. Bhatia, T.X. Nguyen, Potential of silicon carbide-derived carbon for carbon capture. Ind. Eng. Chem. Res. 50, 10380–10383 (2011)CrossRef
102.
go back to reference Z. Zondaka, R. Valner, A. Aabloo, T. Tamm, R. Kiefer, Embedded carbide-derived carbon particles in polypyrrole for linear actuator. Proc. SPIE 9798, 97981H-7 (2016) Z. Zondaka, R. Valner, A. Aabloo, T. Tamm, R. Kiefer, Embedded carbide-derived carbon particles in polypyrrole for linear actuator. Proc. SPIE 9798, 97981H-7 (2016)
103.
go back to reference W. Xing, C. Liu, Z. Zhou, J. Zhou, G. Wang, S. Zhuo, et al., Oxygen-containing functional group-facilitated CO2 capture by carbide-derived carbons. Nanoscale Res. Lett. 9, 189 (2014)CrossRef W. Xing, C. Liu, Z. Zhou, J. Zhou, G. Wang, S. Zhuo, et al., Oxygen-containing functional group-facilitated CO2 capture by carbide-derived carbons. Nanoscale Res. Lett. 9, 189 (2014)CrossRef
104.
go back to reference L. Borchardt, F. Hasche, M.R. Lohe, et al., Transition metal loaded silicon carbide-derived carbons with enhanced catalytic properties. Carbon 50, 1861–1870 (2012)CrossRef L. Borchardt, F. Hasche, M.R. Lohe, et al., Transition metal loaded silicon carbide-derived carbons with enhanced catalytic properties. Carbon 50, 1861–1870 (2012)CrossRef
105.
go back to reference J. Gläsel, J. Diao, Z. Feng, M. Hilgart, T. Wolker, D. Sheng Su, B.J.M. Etzold, Mesoporous and graphitic carbide-derived carbons as selective and stable catalysts for the dehydrogenation reaction. Chem. Mater. 27, 5719–5725 (2015)CrossRef J. Gläsel, J. Diao, Z. Feng, M. Hilgart, T. Wolker, D. Sheng Su, B.J.M. Etzold, Mesoporous and graphitic carbide-derived carbons as selective and stable catalysts for the dehydrogenation reaction. Chem. Mater. 27, 5719–5725 (2015)CrossRef
106.
go back to reference J. Tae Lee, H. Kim, M. Oschatz, D.-C. Lee, F. Wu, H.-T. Lin, et al., Micro- and mesoporous carbide-derived carbon–selenium cathodes for high-performance lithium selenium batteries. Adv. Energy Mater. 5, 1400981 (2014)CrossRef J. Tae Lee, H. Kim, M. Oschatz, D.-C. Lee, F. Wu, H.-T. Lin, et al., Micro- and mesoporous carbide-derived carbon–selenium cathodes for high-performance lithium selenium batteries. Adv. Energy Mater. 5, 1400981 (2014)CrossRef
107.
go back to reference W. Nickel, M. Oschatz, M. von der Lehr, M. Leistner, et al., Direct synthesis of carbide-derived carbon monoliths with hierarchical pore design by hardtemplating. J. Mater. Chem. A 2, 12703 (2014)CrossRef W. Nickel, M. Oschatz, M. von der Lehr, M. Leistner, et al., Direct synthesis of carbide-derived carbon monoliths with hierarchical pore design by hardtemplating. J. Mater. Chem. A 2, 12703 (2014)CrossRef
108.
go back to reference P.-C. Gao, W.-Y. Tsai, B. Daffos, P.-L. Taberna, C.R. Pérez, Y. Gogotsi, P. Simon, F.G. Favier, Carbide derived carbon for high-power supercapacitors. Nano Energy 12, 197–206 (2015)CrossRef P.-C. Gao, W.-Y. Tsai, B. Daffos, P.-L. Taberna, C.R. Pérez, Y. Gogotsi, P. Simon, F.G. Favier, Carbide derived carbon for high-power supercapacitors. Nano Energy 12, 197–206 (2015)CrossRef
109.
go back to reference H. Wang, Q.-L. Zhu, R. Zou, Q. Xu, Metal-organic frameworks for energy applications. Chem 2, 52–80 (2017)CrossRef H. Wang, Q.-L. Zhu, R. Zou, Q. Xu, Metal-organic frameworks for energy applications. Chem 2, 52–80 (2017)CrossRef
110.
go back to reference K. Shen, X. Chen, J. Chen, Y. Li, Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal. 6(9), 5887–5903 (2016)CrossRef K. Shen, X. Chen, J. Chen, Y. Li, Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal. 6(9), 5887–5903 (2016)CrossRef
111.
go back to reference Q. Ren, H. Wang, X.-F. Lu, Y.-X. Tong, G.-R. Li, Recent Progress on MOF-derived heteroatom-doped carbon-based Electrocatalysts for oxygen reduction reaction. Adv. Sci. 5(3), 1700515 (2018)CrossRef Q. Ren, H. Wang, X.-F. Lu, Y.-X. Tong, G.-R. Li, Recent Progress on MOF-derived heteroatom-doped carbon-based Electrocatalysts for oxygen reduction reaction. Adv. Sci. 5(3), 1700515 (2018)CrossRef
112.
go back to reference L. Lux, K. Williams, S. Ma, Heat-treatment of metal–organic frameworks for green energy applications. CrystEngComm 17, 10–22 (2015)CrossRef L. Lux, K. Williams, S. Ma, Heat-treatment of metal–organic frameworks for green energy applications. CrystEngComm 17, 10–22 (2015)CrossRef
113.
go back to reference A. Dhakshinamoorthy, H. Garcia, Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chem. Soc. Rev. 41, 5262–5284 (2012)CrossRef A. Dhakshinamoorthy, H. Garcia, Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chem. Soc. Rev. 41, 5262–5284 (2012)CrossRef
114.
go back to reference P. Silva, S.M.F. Vilela, J.P.C. Tome, F.A. Almeida Paz, Multifunctional metal–organic frameworks: From academia to industrial applications. Chem. Soc. Rev. 44, 6774–6803 (2015)CrossRef P. Silva, S.M.F. Vilela, J.P.C. Tome, F.A. Almeida Paz, Multifunctional metal–organic frameworks: From academia to industrial applications. Chem. Soc. Rev. 44, 6774–6803 (2015)CrossRef
115.
go back to reference B. Liu, H. Shioyama, H. Jiang, X. Zhang, Q. Xu, Metal–organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon 48, 456–463 (2010)CrossRef B. Liu, H. Shioyama, H. Jiang, X. Zhang, Q. Xu, Metal–organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon 48, 456–463 (2010)CrossRef
116.
go back to reference M. Yang, X. Hu, Z. Fang, et al., Bifunctional MOF-derived carbon photonic crystal architectures for advanced Zn–air and li–S batteries: Highly exposed graphitic nitrogen matters. Adv. Funct. Mater. 27(36), 1701971 (2017)CrossRef M. Yang, X. Hu, Z. Fang, et al., Bifunctional MOF-derived carbon photonic crystal architectures for advanced Zn–air and li–S batteries: Highly exposed graphitic nitrogen matters. Adv. Funct. Mater. 27(36), 1701971 (2017)CrossRef
118.
go back to reference B. Chen, G. Ma, D. Kong, Y. Zhu, Y. Xia, Atomically homogeneous dispersed ZnO/N-doped nanoporous carbon composites with enhanced CO2 uptake capacities and high efficient organic pollutants removal from water. Carbon 95, 113–124 (2015)CrossRef B. Chen, G. Ma, D. Kong, Y. Zhu, Y. Xia, Atomically homogeneous dispersed ZnO/N-doped nanoporous carbon composites with enhanced CO2 uptake capacities and high efficient organic pollutants removal from water. Carbon 95, 113–124 (2015)CrossRef
119.
go back to reference W. Zhang, Z.-Y. Wu, H.-L. Jiang, S.-H. Yu, Nanowire-directed templating synthesis of metal−organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced Electrocatalysis. J. Am. Chem. Soc. 136, 14385–14388 (2014)CrossRef W. Zhang, Z.-Y. Wu, H.-L. Jiang, S.-H. Yu, Nanowire-directed templating synthesis of metal−organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced Electrocatalysis. J. Am. Chem. Soc. 136, 14385–14388 (2014)CrossRef
120.
go back to reference H.-L. Jiang, B. Liu, Y.-Q. Lan, et al., From metal-organic framework to Nanoporous carbon: Toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 133(31), 11854–11857 (2011)CrossRef H.-L. Jiang, B. Liu, Y.-Q. Lan, et al., From metal-organic framework to Nanoporous carbon: Toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 133(31), 11854–11857 (2011)CrossRef
121.
go back to reference B. Ding, J. Wang, Z. Chang, G. Xu, et al., Self-sacrificial template-directed synthesis of metal–organic framework-derived porous carbon for energy-storage devices. Chem. Electro. Chem. 3(4), 668–674 (2016) B. Ding, J. Wang, Z. Chang, G. Xu, et al., Self-sacrificial template-directed synthesis of metal–organic framework-derived porous carbon for energy-storage devices. Chem. Electro. Chem. 3(4), 668–674 (2016)
122.
go back to reference R. Chen, T. Zhao, T. Tian, et al., Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries. APL Materials 2, 124109 (2014)CrossRef R. Chen, T. Zhao, T. Tian, et al., Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries. APL Materials 2, 124109 (2014)CrossRef
123.
go back to reference H. Bin Wu, S. Wei, L. Zhang et al. Embedding Sulfur in MOF-Derived Microporous Carbon Polyhedrons for Lithium–Sulfur Batteries. Chemistry, a Eur. J., 2013, 9(33), 10804–10808CrossRef H. Bin Wu, S. Wei, L. Zhang et al. Embedding Sulfur in MOF-Derived Microporous Carbon Polyhedrons for Lithium–Sulfur Batteries. Chemistry, a Eur. J., 2013, 9(33), 10804–10808CrossRef
124.
go back to reference A. Banerjee, K.K. Upadhyay, et al., MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density li-ion hybrid electrochemical capacitors (li-HECs). Nanoscale 6(8), 4387–4394 (2014)CrossRef A. Banerjee, K.K. Upadhyay, et al., MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density li-ion hybrid electrochemical capacitors (li-HECs). Nanoscale 6(8), 4387–4394 (2014)CrossRef
126.
go back to reference A. Li, Y. Tong, B. Cao, H. Song, et al. MOF-derived multifractal porous carbon with ultrahigh lithium-ion storage performance. Scientific Rep. 7, Article number: 40574 (2017) A. Li, Y. Tong, B. Cao, H. Song, et al. MOF-derived multifractal porous carbon with ultrahigh lithium-ion storage performance. Scientific Rep. 7, Article number: 40574 (2017)
127.
go back to reference H. Li, L. Chi, C. Yang, L. Zhang, et al., MOF derived porous Co@C hexagonal-shaped prisms with high catalytic performance. J. Mater. Res. 31(19), 3069–3077 (2016)CrossRef H. Li, L. Chi, C. Yang, L. Zhang, et al., MOF derived porous Co@C hexagonal-shaped prisms with high catalytic performance. J. Mater. Res. 31(19), 3069–3077 (2016)CrossRef
128.
go back to reference S. Hoon Ahn, A. Manthiram, Self-templated synthesis of co- and N-doped carbon microtubes composed of hollow Nanospheres and nanotubes for efficient oxygen reduction reaction. Small 13(11), 1603437 (2017)CrossRef S. Hoon Ahn, A. Manthiram, Self-templated synthesis of co- and N-doped carbon microtubes composed of hollow Nanospheres and nanotubes for efficient oxygen reduction reaction. Small 13(11), 1603437 (2017)CrossRef
129.
go back to reference Y.-X. Zhou, Y.-Z. Chen, L. Cao, et al., Conversion of a metal–organic framework to N-doped porous carbon incorporating co and CoO nanoparticles: Direct oxidation of alcohols to esters. Chem. Commun. 51, 8292–8295 (2015)CrossRef Y.-X. Zhou, Y.-Z. Chen, L. Cao, et al., Conversion of a metal–organic framework to N-doped porous carbon incorporating co and CoO nanoparticles: Direct oxidation of alcohols to esters. Chem. Commun. 51, 8292–8295 (2015)CrossRef
130.
go back to reference K.-Y.A. Lin, H.-A. Chang, B.-J. Chen, Multi-functional MOF-derived magnetic carbon sponge. J. Mater. Chem. A 4, 13611–13625 (2016)CrossRef K.-Y.A. Lin, H.-A. Chang, B.-J. Chen, Multi-functional MOF-derived magnetic carbon sponge. J. Mater. Chem. A 4, 13611–13625 (2016)CrossRef
131.
go back to reference N.L. Torad, M. Hu, S. Ishihara, et al., Direct synthesis of MOF-derived nanoporous carbon with magnetic co nanoparticles toward efficient water treatment. Small 10(10), 2096–2107 (2014)CrossRef N.L. Torad, M. Hu, S. Ishihara, et al., Direct synthesis of MOF-derived nanoporous carbon with magnetic co nanoparticles toward efficient water treatment. Small 10(10), 2096–2107 (2014)CrossRef
132.
go back to reference X. Liu, X. Quan, Fe-MOF derived ferrous hierarchically porous carbon used as EF cathode for PFOA degradation. Journal of Geoscience and Environment Protection 5(6), 9–14 (2017)CrossRef X. Liu, X. Quan, Fe-MOF derived ferrous hierarchically porous carbon used as EF cathode for PFOA degradation. Journal of Geoscience and Environment Protection 5(6), 9–14 (2017)CrossRef
133.
go back to reference E.C. Walter, T. Beetz, M.Y. Sfeir, L.E. Brus, M.L. Steigerwald, Crystalline graphite from an organometallic solution-phase reaction. J. Am. Chem. Soc. 128(49), 15590–15591 (2006)CrossRef E.C. Walter, T. Beetz, M.Y. Sfeir, L.E. Brus, M.L. Steigerwald, Crystalline graphite from an organometallic solution-phase reaction. J. Am. Chem. Soc. 128(49), 15590–15591 (2006)CrossRef
134.
go back to reference W. Sisi, Z. Yinggang, H. Yifeng, et al., Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Sci. China Mater. 60(7), 654–663 (2017)CrossRef W. Sisi, Z. Yinggang, H. Yifeng, et al., Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Sci. China Mater. 60(7), 654–663 (2017)CrossRef
135.
go back to reference D.Z. Chen, C.Q. Chen, W.S. Shen, et al., MOF-derived magnetic porous carbon-based sorbent: Synthesis, characterization, and adsorption behavior of organic micropollutants. Adv. Powder Technol. 28(7), 1769–1779 (2017)CrossRef D.Z. Chen, C.Q. Chen, W.S. Shen, et al., MOF-derived magnetic porous carbon-based sorbent: Synthesis, characterization, and adsorption behavior of organic micropollutants. Adv. Powder Technol. 28(7), 1769–1779 (2017)CrossRef
136.
go back to reference S. Hoon Ahn, M.J. Klein, A. Manthiram, 1D co- and N-doped hierarchically porous carbon nanotubes derived from bimetallic metal organic framework for efficient oxygen and tri-iodide reduction reactions. Adv. Energy Mater. 7(7), 1601979 (2017)CrossRef S. Hoon Ahn, M.J. Klein, A. Manthiram, 1D co- and N-doped hierarchically porous carbon nanotubes derived from bimetallic metal organic framework for efficient oxygen and tri-iodide reduction reactions. Adv. Energy Mater. 7(7), 1601979 (2017)CrossRef
137.
go back to reference Q. Gan, K. Zhao, S. Liu, Z. He, MOF-derived carbon coating on self-supported ZnCo2O4–ZnO nanorod arrays as high-performance anode for lithium-ion batteries. J. Mater. Sci. 52(13), 7768–7780 (2017)CrossRef Q. Gan, K. Zhao, S. Liu, Z. He, MOF-derived carbon coating on self-supported ZnCo2O4–ZnO nanorod arrays as high-performance anode for lithium-ion batteries. J. Mater. Sci. 52(13), 7768–7780 (2017)CrossRef
138.
go back to reference Z. Li, L. Yin, MOF-derived, N-doped, hierarchically porous carbon sponges as immobilizers to confine selenium as cathodes for li–se batteries with superior storage capacity and perfect cycling stability. Nanoscale 7, 9597–9606 (2015)CrossRef Z. Li, L. Yin, MOF-derived, N-doped, hierarchically porous carbon sponges as immobilizers to confine selenium as cathodes for li–se batteries with superior storage capacity and perfect cycling stability. Nanoscale 7, 9597–9606 (2015)CrossRef
139.
go back to reference W. Chaikittisilp, K. Ariga, Y. Yamauchi, A new family of carbon materials: Synthesis of MOF-derived nanoporous carbons and their promising applications. J. Mater. Chem. A 1, 14–19 (2013)CrossRef W. Chaikittisilp, K. Ariga, Y. Yamauchi, A new family of carbon materials: Synthesis of MOF-derived nanoporous carbons and their promising applications. J. Mater. Chem. A 1, 14–19 (2013)CrossRef
140.
go back to reference M. Hui Yap, K. Loon Fow, G. Zheng Chen, Synthesis and applications of MOF-derived porous nanostructures. Green Energy Environ. 2(3), 218–245 (2017)CrossRef M. Hui Yap, K. Loon Fow, G. Zheng Chen, Synthesis and applications of MOF-derived porous nanostructures. Green Energy Environ. 2(3), 218–245 (2017)CrossRef
141.
go back to reference S. Fardindoost, S. Hatamie, A. Iraji Zad, F. Razi Astaraei, Hydrogen sensing properties of nanocomposite graphene oxide/co-based metal organic frameworks (co-MOFs@GO). Nanotechnology 29, 015501 (2018). (7 pp)CrossRef S. Fardindoost, S. Hatamie, A. Iraji Zad, F. Razi Astaraei, Hydrogen sensing properties of nanocomposite graphene oxide/co-based metal organic frameworks (co-MOFs@GO). Nanotechnology 29, 015501 (2018). (7 pp)CrossRef
142.
go back to reference G. Cai, W. Zhang, L. Jiao, S.-H. Yu, H.-L. Jiang, Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting. Chem 2(6), 791–802 (2017)CrossRef G. Cai, W. Zhang, L. Jiao, S.-H. Yu, H.-L. Jiang, Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting. Chem 2(6), 791–802 (2017)CrossRef
143.
go back to reference T. Nagy, L. Yunq, I. Shinsuke, et al., MOF-derived nanoporous carbon as intracellular drug delivery carriers. Chem. Lett. 43(5), 717–719 (2014)CrossRef T. Nagy, L. Yunq, I. Shinsuke, et al., MOF-derived nanoporous carbon as intracellular drug delivery carriers. Chem. Lett. 43(5), 717–719 (2014)CrossRef
144.
go back to reference L. Xiao, R. Xu, Q. Yuan, F. Wang, Highly sensitive electrochemical sensor for chloramphenicol based on MOF derived exfoliated porous carbon. Talanta 167, 39–43 (2017)CrossRef L. Xiao, R. Xu, Q. Yuan, F. Wang, Highly sensitive electrochemical sensor for chloramphenicol based on MOF derived exfoliated porous carbon. Talanta 167, 39–43 (2017)CrossRef
145.
go back to reference W. Li, S. Hu, X. Luo, et al., Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 29(16), 1605820 (2017)CrossRef W. Li, S. Hu, X. Luo, et al., Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 29(16), 1605820 (2017)CrossRef
146.
go back to reference S. Pandiaraj, H.B. Aiyappa, R. Banerjee, S. Kurungot, Post modification of MOF derived carbon via g-C3N4 entrapment for an efficient metal-free oxygen reduction reaction. Chem. Commun. 50, 3363–3366 (2014)CrossRef S. Pandiaraj, H.B. Aiyappa, R. Banerjee, S. Kurungot, Post modification of MOF derived carbon via g-C3N4 entrapment for an efficient metal-free oxygen reduction reaction. Chem. Commun. 50, 3363–3366 (2014)CrossRef
148.
go back to reference A.G. Kvashnin, P.B. Sorokin, Lonsdaleite films with nanometer thickness. J. Phys. Chem. Lett. 5, 541–548 (2014)CrossRef A.G. Kvashnin, P.B. Sorokin, Lonsdaleite films with nanometer thickness. J. Phys. Chem. Lett. 5, 541–548 (2014)CrossRef
151.
go back to reference P. Nemeth, L.A.J. Garvie, T. Aoki, N. Dubrovinskaia, L. Dubrovinsky, P.R. Buseck, Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material. Nat. Commun. 5, 5447, 5 pp (2014)CrossRef P. Nemeth, L.A.J. Garvie, T. Aoki, N. Dubrovinskaia, L. Dubrovinsky, P.R. Buseck, Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material. Nat. Commun. 5, 5447, 5 pp (2014)CrossRef
152.
go back to reference L. Qingkun, S. Yi, L. Zhiyuan, Z. Yu, Lonsdaleite – A material stronger and stiffer than diamond. Scr. Mater. 65, 229–232 (2011)CrossRef L. Qingkun, S. Yi, L. Zhiyuan, Z. Yu, Lonsdaleite – A material stronger and stiffer than diamond. Scr. Mater. 65, 229–232 (2011)CrossRef
153.
go back to reference D. Kraus, A. Ravasio, M. Gauthier, D.O. Gericke, et al., Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nat. Commun. 7, 10970, 6 pp (2016)CrossRef D. Kraus, A. Ravasio, M. Gauthier, D.O. Gericke, et al., Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nat. Commun. 7, 10970, 6 pp (2016)CrossRef
154.
go back to reference B. Kulnitskiy, I. Perezhogin, G. Dubitskya, V. Blank, Polytypes and twins in the diamond–lonsdaleite system formed by high-pressure and high-temperature treatment of graphite. Acta Cryst B69, 474–479 (2013) B. Kulnitskiy, I. Perezhogin, G. Dubitskya, V. Blank, Polytypes and twins in the diamond–lonsdaleite system formed by high-pressure and high-temperature treatment of graphite. Acta Cryst B69, 474–479 (2013)
155.
go back to reference Y. Nakamuta, S. Toh, Transformation of graphite to lonsdaleite and diamond in the Goalpara ureilite directly observed by TEM. Am. Mineral. 98(4), 574–581 (2015)CrossRef Y. Nakamuta, S. Toh, Transformation of graphite to lonsdaleite and diamond in the Goalpara ureilite directly observed by TEM. Am. Mineral. 98(4), 574–581 (2015)CrossRef
156.
go back to reference S.V. Goryainov, A.Y. Likhacheva, S.V. Rashchenko, A.S. Shubin, V.P. Afanas’eva, N.P. Pokhilenko, Raman identification of lonsdaleite in Popigai impactites. J. Raman Spectrosc. 45, 305–313 (2014)CrossRef S.V. Goryainov, A.Y. Likhacheva, S.V. Rashchenko, A.S. Shubin, V.P. Afanas’eva, N.P. Pokhilenko, Raman identification of lonsdaleite in Popigai impactites. J. Raman Spectrosc. 45, 305–313 (2014)CrossRef
157.
go back to reference B. Qu, B. Zhang, L. Wang, R. Zhou, X. Cheng Zeng, L. Li, Persistent luminescence hole-type materials by design: Transition-metal-doped carbon allotrope and carbides. ACS Appl. Mater. Interfaces 8(8), 5439–5444 (2016)CrossRef B. Qu, B. Zhang, L. Wang, R. Zhou, X. Cheng Zeng, L. Li, Persistent luminescence hole-type materials by design: Transition-metal-doped carbon allotrope and carbides. ACS Appl. Mater. Interfaces 8(8), 5439–5444 (2016)CrossRef
158.
go back to reference A. Milani, M. Tommasini, V. Russo, et al., Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires. Beilstein J. Nanotechnol. 6, 480–491 (2015)CrossRef A. Milani, M. Tommasini, V. Russo, et al., Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires. Beilstein J. Nanotechnol. 6, 480–491 (2015)CrossRef
159.
go back to reference V.V. Sobolev, V.Y. Slobodskoy, S.N. Selyukov, A.A. Udoyev, Some conversions of chaoite to other carbon phases. Int. Geol. Rev. 28(6), 680–683 (1986)CrossRef V.V. Sobolev, V.Y. Slobodskoy, S.N. Selyukov, A.A. Udoyev, Some conversions of chaoite to other carbon phases. Int. Geol. Rev. 28(6), 680–683 (1986)CrossRef
160.
go back to reference J. Pola, A. Ouchi, S. Bakardjieva, et al., Laser photochemical etching of silica: Nanodomains of crystalline chaoite and silica in amorphous C/Si/O/N phase. J. Phys. Chem. C 112(34), 13281–13286 (2008)CrossRef J. Pola, A. Ouchi, S. Bakardjieva, et al., Laser photochemical etching of silica: Nanodomains of crystalline chaoite and silica in amorphous C/Si/O/N phase. J. Phys. Chem. C 112(34), 13281–13286 (2008)CrossRef
161.
go back to reference A. Tembre, J. Henocque, M. Clin. Infrared and Raman spectroscopic study of carbon-cobalt composites. Int. J. Spectrosc. 2011, Article ID 186471, 6 pp (2011) A. Tembre, J. Henocque, M. Clin. Infrared and Raman spectroscopic study of carbon-cobalt composites. Int. J. Spectrosc. 2011, Article ID 186471, 6 pp (2011)
162.
go back to reference S.K. Simakov, A.E. Kalmykov, L.M. Sorokin, et al., Chaoite formation from carbon-bearing fluid at low PT parameters. Dokl. Earth Sci. 399A(9), 1289–1290 (2004) S.K. Simakov, A.E. Kalmykov, L.M. Sorokin, et al., Chaoite formation from carbon-bearing fluid at low PT parameters. Dokl. Earth Sci. 399A(9), 1289–1290 (2004)
163.
go back to reference S. Li, Z. Huang, et al., Ferromagnetic chaoite macrotubes prepared at low temperature and pressure. Appl. Phys. Lett. 90, 232507 (2007)CrossRef S. Li, Z. Huang, et al., Ferromagnetic chaoite macrotubes prepared at low temperature and pressure. Appl. Phys. Lett. 90, 232507 (2007)CrossRef
164.
go back to reference S. Li, G. Ji, Z. Huang, F. Zhang, Y. Du, Synthesis of chaoite-like macrotubes at low temperature and ambient pressure. Carbon 45, 2946–2950 (2007)CrossRef S. Li, G. Ji, Z. Huang, F. Zhang, Y. Du, Synthesis of chaoite-like macrotubes at low temperature and ambient pressure. Carbon 45, 2946–2950 (2007)CrossRef
165.
go back to reference Q. Peng, A.K. Dearden, J. Crean, et al., New materials graphyne, graphdiyne, graphone, and graphane: Review of properties, synthesis, and application in nanotechnology. Nanotechnol. Sci. Appl. 7, 1–29 (2014)CrossRef Q. Peng, A.K. Dearden, J. Crean, et al., New materials graphyne, graphdiyne, graphone, and graphane: Review of properties, synthesis, and application in nanotechnology. Nanotechnol. Sci. Appl. 7, 1–29 (2014)CrossRef
166.
go back to reference J.O. Sofo, A.S. Chaudhari, G.D. Barber, Graphane: A two-dimensional hydrocarbon. Phys. Rev. B 75, 153401 (2007)CrossRef J.O. Sofo, A.S. Chaudhari, G.D. Barber, Graphane: A two-dimensional hydrocarbon. Phys. Rev. B 75, 153401 (2007)CrossRef
167.
go back to reference D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Control of Graphene’s properties by reversible hydrogenation: Evidence for Graphane. Science 323(5914), 610–613 (2009)CrossRef D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Control of Graphene’s properties by reversible hydrogenation: Evidence for Graphane. Science 323(5914), 610–613 (2009)CrossRef
168.
go back to reference H. Sahin, O. Leenaerts, S.K. Singh, F.M. Peeters. GraphAne: From synthesis to applications. arXiv:1502.05804 [cond-mat.mtrl-sci], (2015) H. Sahin, O. Leenaerts, S.K. Singh, F.M. Peeters. GraphAne: From synthesis to applications. arXiv:1502.05804 [cond-mat.mtrl-sci], (2015)
169.
go back to reference H. Zhang, Y. Miyamoto, A. Rubio. Laser-induced preferential dehydrogenation of graphane. Phys. Rev. B. 85, 201409(R) (2012) H. Zhang, Y. Miyamoto, A. Rubio. Laser-induced preferential dehydrogenation of graphane. Phys. Rev. B. 85, 201409(R) (2012)
170.
go back to reference C. Zhou, S. Chen, J. Lou, J. Wang, et al., Graphene’s cousin: The present and future of graphene. Nanoscale Res. Lett. 9, 26 (2014)CrossRef C. Zhou, S. Chen, J. Lou, J. Wang, et al., Graphene’s cousin: The present and future of graphene. Nanoscale Res. Lett. 9, 26 (2014)CrossRef
171.
go back to reference H. Sahin, O. Leenaerts, S.K. Singh, F.M. Peeters, Graphane. WIREs Comput. Mol. Sci. 5, 255–272 (2015)CrossRef H. Sahin, O. Leenaerts, S.K. Singh, F.M. Peeters, Graphane. WIREs Comput. Mol. Sci. 5, 255–272 (2015)CrossRef
172.
go back to reference A. Bhattacharya, S. Bhattacharya, C. Majumder, G.P. Das. Third conformer of graphane: A first-principles density functional theory study. Phys. Rev. B. 83, Article ID 033404 (2011) A. Bhattacharya, S. Bhattacharya, C. Majumder, G.P. Das. Third conformer of graphane: A first-principles density functional theory study. Phys. Rev. B. 83, Article ID 033404 (2011)
173.
go back to reference H. Einollahzadeh, S. Mahdi Fazeli, R. Sabet Dariani, Studying the electronic and phononic structure of penta-graphane. Sci. Technol. Adv. Mater. 17(1), 610–617 (2016)CrossRef H. Einollahzadeh, S. Mahdi Fazeli, R. Sabet Dariani, Studying the electronic and phononic structure of penta-graphane. Sci. Technol. Adv. Mater. 17(1), 610–617 (2016)CrossRef
174.
go back to reference D. Haberer, C.E. Guusca, Y. Wang, et al., Evidence for a new two-dimensional C4H-type polymer based on hydrogenated graphene. Adv. Mater. 23, 4497–4503 (2011)CrossRef D. Haberer, C.E. Guusca, Y. Wang, et al., Evidence for a new two-dimensional C4H-type polymer based on hydrogenated graphene. Adv. Mater. 23, 4497–4503 (2011)CrossRef
175.
go back to reference V.E. Antonov, I.O. Bashkin, A.V. Bazhenov, et al., Multilayer graphane synthesized under high hydrogen pressure. Carbon 100, 465–473 (2016)CrossRef V.E. Antonov, I.O. Bashkin, A.V. Bazhenov, et al., Multilayer graphane synthesized under high hydrogen pressure. Carbon 100, 465–473 (2016)CrossRef
176.
go back to reference H. Peelaers, A.D. Hernández-Nieves, O. Leenaerts, B. Partoens, F.M. Peeters, Vibrational properties of graphene fluoride and graphene. Appl. Phys. Lett. 98, 051914 (2011)CrossRef H. Peelaers, A.D. Hernández-Nieves, O. Leenaerts, B. Partoens, F.M. Peeters, Vibrational properties of graphene fluoride and graphene. Appl. Phys. Lett. 98, 051914 (2011)CrossRef
177.
go back to reference M. Pumera, Z. Sofer, Towards stoichiometric analogues of graphene: Graphane, fluorographene, graphol, graphene acid and others. Chem. Soc. Rev. 46, 4450–4463 (2017)CrossRef M. Pumera, Z. Sofer, Towards stoichiometric analogues of graphene: Graphane, fluorographene, graphol, graphene acid and others. Chem. Soc. Rev. 46, 4450–4463 (2017)CrossRef
178.
go back to reference B.-R. Wu, C.-K. Yang, Electronic structures of graphane with vacancies and graphene adsorbed with fluorine atoms. AIP Adv. 2, 012173 (2012)CrossRef B.-R. Wu, C.-K. Yang, Electronic structures of graphane with vacancies and graphene adsorbed with fluorine atoms. AIP Adv. 2, 012173 (2012)CrossRef
179.
go back to reference M.Z.S. Flores, P.A.S. Autreto, S.B. Legoas, D.S. Galvao, Graphene to graphane: A theoretical study. Nanotechnology 20, 465704, 6 pp (2009)CrossRef M.Z.S. Flores, P.A.S. Autreto, S.B. Legoas, D.S. Galvao, Graphene to graphane: A theoretical study. Nanotechnology 20, 465704, 6 pp (2009)CrossRef
180.
go back to reference W. Liu, F.-H. Meng, J.-H. Zhao, X.-H. Jiang, A first-principles study on the electronic transport properties of zigzag graphane/graphene nanoribbons. J. Theor. Comput. Chem. 16(4), 1750032, 12 pp (2017)CrossRef W. Liu, F.-H. Meng, J.-H. Zhao, X.-H. Jiang, A first-principles study on the electronic transport properties of zigzag graphane/graphene nanoribbons. J. Theor. Comput. Chem. 16(4), 1750032, 12 pp (2017)CrossRef
181.
go back to reference J.-H. Lee, J.C. Grossman, Magnetic properties in graphene-graphane superlattices. Appl. Phys. Lett. 97, 133102 (2010)CrossRef J.-H. Lee, J.C. Grossman, Magnetic properties in graphene-graphane superlattices. Appl. Phys. Lett. 97, 133102 (2010)CrossRef
182.
go back to reference A.S. Barnarda, I.K. Snook, Size- and shape-dependence of the graphene to graphane transformation in the absence of hydrogen. J. Mater. Chem. 20, 10459–10464 (2010)CrossRef A.S. Barnarda, I.K. Snook, Size- and shape-dependence of the graphene to graphane transformation in the absence of hydrogen. J. Mater. Chem. 20, 10459–10464 (2010)CrossRef
183.
go back to reference T. Hussain, P. Panigrahi, R. Ahuja, Sensing propensity of a defected graphane sheet towards CO, H2O and NO2. Nanotechnology 25(32), 325501 (2014)CrossRef T. Hussain, P. Panigrahi, R. Ahuja, Sensing propensity of a defected graphane sheet towards CO, H2O and NO2. Nanotechnology 25(32), 325501 (2014)CrossRef
184.
go back to reference J. Xiao, S. Sitamraju, M.J. Janik, CO2 adsorption thermodynamics over N-substituted/grafted Graphanes: A DFT study. Langmuir 30(7), 1837–1844 (2014)CrossRef J. Xiao, S. Sitamraju, M.J. Janik, CO2 adsorption thermodynamics over N-substituted/grafted Graphanes: A DFT study. Langmuir 30(7), 1837–1844 (2014)CrossRef
185.
go back to reference T. Hussain, P. Panigrahi, R. Ahuja, Enriching physisorption of H2S and NH3 gases on a graphane sheet by doping with li adatoms. Phys. Chem. Chem. Phys. 16(17), 8100–8105 (2014)CrossRef T. Hussain, P. Panigrahi, R. Ahuja, Enriching physisorption of H2S and NH3 gases on a graphane sheet by doping with li adatoms. Phys. Chem. Chem. Phys. 16(17), 8100–8105 (2014)CrossRef
186.
go back to reference E. Ventura-Macias, J. Guerrero-Sánchez, N. Takeuchi, Formaldehyde adsorption on graphane. Computational and Theoretical Chemistry 1117, 119–123 (2017)CrossRef E. Ventura-Macias, J. Guerrero-Sánchez, N. Takeuchi, Formaldehyde adsorption on graphane. Computational and Theoretical Chemistry 1117, 119–123 (2017)CrossRef
187.
go back to reference T. Hussain, B. Pathak, M. Ramzan, T.A. Maark, R. Ahuja, Calcium doped graphane as a hydrogen storage material. Appl. Phys. Lett. 100, 183902 (2012)CrossRef T. Hussain, B. Pathak, M. Ramzan, T.A. Maark, R. Ahuja, Calcium doped graphane as a hydrogen storage material. Appl. Phys. Lett. 100, 183902 (2012)CrossRef
188.
go back to reference S.C. Ray, N. Soin, T. Makgato, et al., Graphene supported Graphone/Graphane bilayer nanostructure material for Spintronics. Sci. Reports 4, 3862 (2014)CrossRef S.C. Ray, N. Soin, T. Makgato, et al., Graphene supported Graphone/Graphane bilayer nanostructure material for Spintronics. Sci. Reports 4, 3862 (2014)CrossRef
189.
go back to reference W. Zhao, J. Gebhardt, F. Spath, et al., Reversible hydrogenation of graphene on Ni(111)—Synthesis of “Graphone”. Chem. Eur. J. 21, 3347–3358 (2015)CrossRef W. Zhao, J. Gebhardt, F. Spath, et al., Reversible hydrogenation of graphene on Ni(111)—Synthesis of “Graphone”. Chem. Eur. J. 21, 3347–3358 (2015)CrossRef
190.
go back to reference L. Feng, W.X. Zhang, The structure and magnetism of graphone. AIP Adv. 2, 042138 (2012)CrossRef L. Feng, W.X. Zhang, The structure and magnetism of graphone. AIP Adv. 2, 042138 (2012)CrossRef
191.
go back to reference Q. Peng, A.K. Dearden, X.-J. Chen, et al., Peculiar pressure effect on Poisson ratio of graphone as a strain damper. Nanoscale 7, 9975–9979 (2015)CrossRef Q. Peng, A.K. Dearden, X.-J. Chen, et al., Peculiar pressure effect on Poisson ratio of graphone as a strain damper. Nanoscale 7, 9975–9979 (2015)CrossRef
192.
go back to reference M. Neek-Amal, J. Beheshtian, F. Shayeganfar, S.K. Singh, J.H. Los, F.M. Peeters, Spiral graphone and one-sided fluorographene nanoribbons. Phys. Rev. B 87, 075448 (2013)CrossRef M. Neek-Amal, J. Beheshtian, F. Shayeganfar, S.K. Singh, J.H. Los, F.M. Peeters, Spiral graphone and one-sided fluorographene nanoribbons. Phys. Rev. B 87, 075448 (2013)CrossRef
193.
go back to reference A.I. Podlivaev, L.A. Openov, On the thermal stability of Graphone. Semiconductors 45(7), 958–961 (2011)CrossRef A.I. Podlivaev, L.A. Openov, On the thermal stability of Graphone. Semiconductors 45(7), 958–961 (2011)CrossRef
194.
go back to reference D.W. Boukhvalov, Stable antiferromagneticgraphone. Physica E43, 199–201 (2010)CrossRef D.W. Boukhvalov, Stable antiferromagneticgraphone. Physica E43, 199–201 (2010)CrossRef
195.
go back to reference Q. Li, Y. Ma, A.R. Oganov, et al., Superhard monoclinic polymorph of carbon. Phys. Rev. Lett. 102, 175506 (2009)CrossRef Q. Li, Y. Ma, A.R. Oganov, et al., Superhard monoclinic polymorph of carbon. Phys. Rev. Lett. 102, 175506 (2009)CrossRef
196.
go back to reference M.J. Xing, B.H. Li, Z.T. Yu, Q. Chen, Monoclinic C2/m-20 carbon: a novel superhard sp3 carbon allotrope. RSC Adv. 6, 32740–32745 (2016)CrossRef M.J. Xing, B.H. Li, Z.T. Yu, Q. Chen, Monoclinic C2/m-20 carbon: a novel superhard sp3 carbon allotrope. RSC Adv. 6, 32740–32745 (2016)CrossRef
197.
go back to reference M. Amsler, J.A. Flores-Livas, M.A.L. Marques, S. Botti, S. Goedecker, Prediction of a novel monoclinic carbon allotrope. The European Physical Journal B 86, 383 (2013)CrossRef M. Amsler, J.A. Flores-Livas, M.A.L. Marques, S. Botti, S. Goedecker, Prediction of a novel monoclinic carbon allotrope. The European Physical Journal B 86, 383 (2013)CrossRef
198.
go back to reference J. Narayan, A. Bhaumik, Novel phase of carbon, ferromagnetism, and conversion into diamond. J. Appl. Phys. 118, 215303 (2015)CrossRef J. Narayan, A. Bhaumik, Novel phase of carbon, ferromagnetism, and conversion into diamond. J. Appl. Phys. 118, 215303 (2015)CrossRef
199.
go back to reference J. Narayan, A. Bhaumik, Q-carbon discovery and formation of single-crystal diamond nano- and microneedles and thin films. Mater. Res. Lett. 4(2), 118–126 (2016)CrossRef J. Narayan, A. Bhaumik, Q-carbon discovery and formation of single-crystal diamond nano- and microneedles and thin films. Mater. Res. Lett. 4(2), 118–126 (2016)CrossRef
200.
go back to reference J. Pandey, R. Khare, S. Khare, Q-carbon: A new, inexpensive and affordable diamond in Everyones hand. International Journal for Research in Applied Science & Engineering 5(V), 89–91 (2017) J. Pandey, R. Khare, S. Khare, Q-carbon: A new, inexpensive and affordable diamond in Everyones hand. International Journal for Research in Applied Science & Engineering 5(V), 89–91 (2017)
202.
go back to reference X.-L. Sheng, Q.-B. Yan, F. Ye, Q.-R. Zheng, G.S. T-Carbon, A novel carbon allotrope. Phys. Rev. Lett. 106, 155703 (2011)CrossRef X.-L. Sheng, Q.-B. Yan, F. Ye, Q.-R. Zheng, G.S. T-Carbon, A novel carbon allotrope. Phys. Rev. Lett. 106, 155703 (2011)CrossRef
203.
go back to reference J. Zhang, R. Wang, X. Zhu, et al. Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol. Nat. Commun. 8, Article number 683 (2017) J. Zhang, R. Wang, X. Zhu, et al. Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol. Nat. Commun. 8, Article number 683 (2017)
204.
go back to reference D. Li, F. Tian, D. Duan, Z. Zhao, et al., Modulated T carbon-like carbon allotropes: An ab initio study. RSC Adv. 4, 17364–17369 (2014)CrossRef D. Li, F. Tian, D. Duan, Z. Zhao, et al., Modulated T carbon-like carbon allotropes: An ab initio study. RSC Adv. 4, 17364–17369 (2014)CrossRef
205.
go back to reference J.Q. Wang, C.X. Zhao, C.Y. Niu, Q. Sun, Y. Jia, C20-T carbon: A novel superhard sp3 carbon allotrope with large cavities. J. Phys. Condens. Matter 28(47), 475402 (2016)CrossRef J.Q. Wang, C.X. Zhao, C.Y. Niu, Q. Sun, Y. Jia, C20-T carbon: A novel superhard sp3 carbon allotrope with large cavities. J. Phys. Condens. Matter 28(47), 475402 (2016)CrossRef
206.
go back to reference Aegerter, Michel A., Leventis, Nicholas, Koebel, Matthias M. (Eds.), Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. (Springer, New York, 2011) Aegerter, Michel A., Leventis, Nicholas, Koebel, Matthias M. (Eds.), Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. (Springer, New York, 2011)
Metadata
Title
Other Existing Carbon Forms
Authors
Boris Ildusovich Kharisov
Oxana Vasilievna Kharissova
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-03505-1_5

Premium Partners