Skip to main content
Top

2020 | OriginalPaper | Chapter

5. Other Powder Bed Processes

Author : Sanjay Kumar

Published in: Additive Manufacturing Processes

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Beam based powder bed fusion makes complex parts, but the process is slow, energy-inefficient and is not cost-effective to make low-value parts. Powder bed processes such as high speed sintering, selective heat sintering, binder jet three-dimensional printing and other emerging processes (micro heater array powder sintering, localized microwave heating based additive manufacturing, multi jet fusion) are more energy-efficient and cost-effective – the present chapter describes these processes. There are various types of scanning such as pointwise scanning, linewise scanning and areawise scanning which impact fabrication rate and resolution. Difference between these types of scanning is explained.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Arredondo MZ, Boone N, Willmott J et al (2017) Laser diode area melting for high speed additive manufacturing of metallic components. Mater Des 117:305–315CrossRef Arredondo MZ, Boone N, Willmott J et al (2017) Laser diode area melting for high speed additive manufacturing of metallic components. Mater Des 117:305–315CrossRef
go back to reference Athreya SR, Kalaitzidou K, Das S (2010) Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering. Mater Sci Eng A 527(10–11):2637–2642CrossRef Athreya SR, Kalaitzidou K, Das S (2010) Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering. Mater Sci Eng A 527(10–11):2637–2642CrossRef
go back to reference Baumers M, Tuck C, Hague R (2015) Selective heat sintering versus laser sintering: comparison of deposition rate, process energy consumption and cost performance. In: SFF Proceedings, pp 109–121 Baumers M, Tuck C, Hague R (2015) Selective heat sintering versus laser sintering: comparison of deposition rate, process energy consumption and cost performance. In: SFF Proceedings, pp 109–121
go back to reference Brown R, Morgan C T, Majweski C E (2018) Not just nylon – improving the range of materials for high speed sintering. In: SFF Proceedings, 1487–1498 Brown R, Morgan C T, Majweski C E (2018) Not just nylon – improving the range of materials for high speed sintering. In: SFF Proceedings, 1487–1498
go back to reference Buls S, Vleugels J, Hooreweder B V (2018) Microwave assisted selective laser melting of technical ceramics. In: SFF Proceedings, pp 2349–2357 Buls S, Vleugels J, Hooreweder B V (2018) Microwave assisted selective laser melting of technical ceramics. In: SFF Proceedings, pp 2349–2357
go back to reference Chatham CA, Long TE, Williams CB (2019) A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing. Progr Polym Sci 93:68–95CrossRef Chatham CA, Long TE, Williams CB (2019) A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing. Progr Polym Sci 93:68–95CrossRef
go back to reference Dallarosa J, O’neill W, Sparkes M, Payne A (2016) Multiple beam additive manufacturing. Patent WO2016201309A1 Dallarosa J, O’neill W, Sparkes M, Payne A (2016) Multiple beam additive manufacturing. Patent WO2016201309A1
go back to reference Deckard C R, Beaman J J, Darrah J F (1992) Method for selective laser sintering with layerwise cross-scanning. US5155324A Deckard C R, Beaman J J, Darrah J F (1992) Method for selective laser sintering with layerwise cross-scanning. US5155324A
go back to reference Ellis A, Noble CJ, Hopkinson N (2014) High Speed Sintering: assessing the influence of print density on microstructure and mechanical properties of nylon parts. Addit Manuf 1–4:48–51 Ellis A, Noble CJ, Hopkinson N (2014) High Speed Sintering: assessing the influence of print density on microstructure and mechanical properties of nylon parts. Addit Manuf 1–4:48–51
go back to reference Enneti RK, Prough KC, Wolfe TA et al (2018) Sintering of WC-12%Co processed by binder jet 3D printing (BJ3DP) technology. Int J Refract Met Hard Mater 71:28–35CrossRef Enneti RK, Prough KC, Wolfe TA et al (2018) Sintering of WC-12%Co processed by binder jet 3D printing (BJ3DP) technology. Int J Refract Met Hard Mater 71:28–35CrossRef
go back to reference Farsari M, Claret-Tournier F, Huang S et al (2000) A novel high-accuracy microstereolithography method employing an adaptive electro-optic mask. J Mater Process Technol 107(1–3):167–172CrossRef Farsari M, Claret-Tournier F, Huang S et al (2000) A novel high-accuracy microstereolithography method employing an adaptive electro-optic mask. J Mater Process Technol 107(1–3):167–172CrossRef
go back to reference Fredriksson C (2019) Sustainability of metal powder additive manufacturing. Proc Manuf 33:139–144 Fredriksson C (2019) Sustainability of metal powder additive manufacturing. Proc Manuf 33:139–144
go back to reference Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. Springer, New YorkCrossRef Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. Springer, New YorkCrossRef
go back to reference Goodridge RD, Shofner ML, Hague RJM et al (2011) Processing of a Polyamide-12/carbon nanofibre composite by laser sintering. Polym Test 30(1):94–100CrossRef Goodridge RD, Shofner ML, Hague RJM et al (2011) Processing of a Polyamide-12/carbon nanofibre composite by laser sintering. Polym Test 30(1):94–100CrossRef
go back to reference Hagen D, Kovar D, Beaman JJ (2018) Effects of electric field on selective laser sintering of yttria-stabilized zirconia ceramic powder. In: SFF Symposium Proceedings, pp 909–913 Hagen D, Kovar D, Beaman JJ (2018) Effects of electric field on selective laser sintering of yttria-stabilized zirconia ceramic powder. In: SFF Symposium Proceedings, pp 909–913
go back to reference Hermann D S, Larson R (2008) Selective mask sintering for rapid production of parts, implemented by digital printing of optical toner masks. In: NIP & digital fabrication conference Hermann D S, Larson R (2008) Selective mask sintering for rapid production of parts, implemented by digital printing of optical toner masks. In: NIP & digital fabrication conference
go back to reference Ho HCH, Cheung WL, Gibson I (2002) Effect of graphite powder on the laser sintering behaviour of polycarbonate. Rapid Prototyp J 8(4):233–242CrossRef Ho HCH, Cheung WL, Gibson I (2002) Effect of graphite powder on the laser sintering behaviour of polycarbonate. Rapid Prototyp J 8(4):233–242CrossRef
go back to reference Holt N, Horn AV, Montazeri M, Zhou W (2018) Microheater array powder sintering: a novel additive manufacturing process. J Manuf Process 31:536–551CrossRef Holt N, Horn AV, Montazeri M, Zhou W (2018) Microheater array powder sintering: a novel additive manufacturing process. J Manuf Process 31:536–551CrossRef
go back to reference Hong R, Zhao Z, Leng J et al (2019) Two-step approach based on selective laser sintering for high performance carbon black/polyamide 12 composite with 3D segregated conductive network. Compos Part B: Eng 176:107214CrossRef Hong R, Zhao Z, Leng J et al (2019) Two-step approach based on selective laser sintering for high performance carbon black/polyamide 12 composite with 3D segregated conductive network. Compos Part B: Eng 176:107214CrossRef
go back to reference Jerby E, Meir Y, Salzberg A et al (2015) Incremental metal-powder solidification by localized microwave-heating and its potential for additive manufacturing. Additive Manufac 6:53–66.CrossRef Jerby E, Meir Y, Salzberg A et al (2015) Incremental metal-powder solidification by localized microwave-heating and its potential for additive manufacturing. Additive Manufac 6:53–66.CrossRef
go back to reference Kernan BD, Sachs EM, Oliveira MA, Cima MJ (2007) Three dimensional printing of tungsten carbide-10 wt % cobalt using a cobalt oxide precursor. Int J Refract Met Hard Mater 25:82–94CrossRef Kernan BD, Sachs EM, Oliveira MA, Cima MJ (2007) Three dimensional printing of tungsten carbide-10 wt % cobalt using a cobalt oxide precursor. Int J Refract Met Hard Mater 25:82–94CrossRef
go back to reference Khoshnevis B, Zhang J, Fateri M, Xiao Z (2014) Ceramics 3D printing by selective inhibition sintering. In: SFF proceedings, pp 163–169 Khoshnevis B, Zhang J, Fateri M, Xiao Z (2014) Ceramics 3D printing by selective inhibition sintering. In: SFF proceedings, pp 163–169
go back to reference Kumar S, Czekanski A (2018) Roadmap to sustainable plastic additive manufacturing. Mater Today Commun 15:109–113CrossRef Kumar S, Czekanski A (2018) Roadmap to sustainable plastic additive manufacturing. Mater Today Commun 15:109–113CrossRef
go back to reference Leonelli C, Veronesi P, Denti L et al (2008) Microwave assisted sintering of green metal parts. J Mater Process Technol 205(1–3):489–496CrossRef Leonelli C, Veronesi P, Denti L et al (2008) Microwave assisted sintering of green metal parts. J Mater Process Technol 205(1–3):489–496CrossRef
go back to reference Li L (2000) The advances and characteristics of high-power diode laser materials processing. Opt Lasers Eng 34(4–6):231–253CrossRef Li L (2000) The advances and characteristics of high-power diode laser materials processing. Opt Lasers Eng 34(4–6):231–253CrossRef
go back to reference Liao YS, Chiu LC, Chiu YY (2003) A new approach of online waste removal process for laminated object manufacturing (LOM). J Mater Process Technol 140(1–3):136–140CrossRef Liao YS, Chiu LC, Chiu YY (2003) A new approach of online waste removal process for laminated object manufacturing (LOM). J Mater Process Technol 140(1–3):136–140CrossRef
go back to reference Pinkerton AJ (2016) Lasers in additive manufacturing. Opt Laser Technol 78A:25–32CrossRef Pinkerton AJ (2016) Lasers in additive manufacturing. Opt Laser Technol 78A:25–32CrossRef
go back to reference Salehi M, Maleksaeedi S, Nai MLS, Gupta M (2019) Towards additive manufacturing of magnesium alloys through integration of binderless 3D printing and rapid microwave sintering. Addit Manuf 29:100790 Salehi M, Maleksaeedi S, Nai MLS, Gupta M (2019) Towards additive manufacturing of magnesium alloys through integration of binderless 3D printing and rapid microwave sintering. Addit Manuf 29:100790
go back to reference Santos ES, Shiomi M, Osakada K, Laoui T (2006) Rapid manufacturing of metal components by laser forming. Int J Mach Tools Manuf 46(12–13):1459–1468CrossRef Santos ES, Shiomi M, Osakada K, Laoui T (2006) Rapid manufacturing of metal components by laser forming. Int J Mach Tools Manuf 46(12–13):1459–1468CrossRef
go back to reference Sillani F, Kleijnen RG, Vetterli M et al (2019) Selective laser sintering and multi jet fusion: process-induced modification of the raw materials and analyses of parts performance. Addit Manuf 27:32–41 Sillani F, Kleijnen RG, Vetterli M et al (2019) Selective laser sintering and multi jet fusion: process-induced modification of the raw materials and analyses of parts performance. Addit Manuf 27:32–41
go back to reference Thomas HR, Hopkinson N, Erasenthiran P (2006) High speed sintering – continuing research into a new rapid manufacturing process. In: SFF proceedings, pp 682–691 Thomas HR, Hopkinson N, Erasenthiran P (2006) High speed sintering – continuing research into a new rapid manufacturing process. In: SFF proceedings, pp 682–691
go back to reference Tian Y, Tomus D, Rometsch P, Wu X (2017) Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting. Addit Manuf 13:103–112 Tian Y, Tomus D, Rometsch P, Wu X (2017) Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting. Addit Manuf 13:103–112
go back to reference Wagner T, Hofer T, Knies S et al (2005) Laser sintering of high temperature resistant polymers with carbon black additives. Int Polym Process 19(4):395–401CrossRef Wagner T, Hofer T, Knies S et al (2005) Laser sintering of high temperature resistant polymers with carbon black additives. Int Polym Process 19(4):395–401CrossRef
go back to reference Zhu L, Cheng J, Zhou H (2000) Research of rapid prototyping process using linear array of high power laser diodes. In high power lasers in manufacturing, In: Proceeding of SPIE 3888 Zhu L, Cheng J, Zhou H (2000) Research of rapid prototyping process using linear array of high power laser diodes. In high power lasers in manufacturing, In: Proceeding of SPIE 3888
Metadata
Title
Other Powder Bed Processes
Author
Sanjay Kumar
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-45089-2_5

Premium Partners