Skip to main content
Top

2018 | OriginalPaper | Chapter

2. Overview of Magnetless Doubly Salient Brushless Machines

Author : Christopher H. T. Lee

Published in: Design, Analysis and Application of Magnetless Doubly Salient Machines

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to a large variety of industrial applications, including the electric vehicles (EVs), wind power generations, ship propulsion systems, and robotic applications, the development of the electric machines has been a hot research topic in the last century (Cheng et al. in IEEE Trans Ind Electr 58(11):5087–5101, 2011 [1]).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Cheng, W. Hua, J. Zhang, W. Zhao, Overview of stator-permanent magnet brushless machines. IEEE Trans. Ind. Electron. 58(11), 5087–5101 (2011)CrossRef M. Cheng, W. Hua, J. Zhang, W. Zhao, Overview of stator-permanent magnet brushless machines. IEEE Trans. Ind. Electron. 58(11), 5087–5101 (2011)CrossRef
2.
go back to reference K.T. Chau, C.C. Chan, C. Liu, Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles. IEEE Trans. Ind. Electron. 55(6), 2246–2257 (2008)CrossRef K.T. Chau, C.C. Chan, C. Liu, Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles. IEEE Trans. Ind. Electron. 55(6), 2246–2257 (2008)CrossRef
3.
go back to reference A. Emadi, Y.J. Lee, K. Rajashekara, Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles. IEEE Trans. Ind. Electron. 55(6), 2237–2245 (2008)CrossRef A. Emadi, Y.J. Lee, K. Rajashekara, Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles. IEEE Trans. Ind. Electron. 55(6), 2237–2245 (2008)CrossRef
4.
go back to reference D. Dorrell, L. Parsa, I. Boldea, Automotive electric motors, generators, and actuator drive systems with reduced or no permanent magnets and innovative design concepts. IEEE Trans. Ind. Electron. 61(10), 5693–5695 (2014)CrossRef D. Dorrell, L. Parsa, I. Boldea, Automotive electric motors, generators, and actuator drive systems with reduced or no permanent magnets and innovative design concepts. IEEE Trans. Ind. Electron. 61(10), 5693–5695 (2014)CrossRef
5.
go back to reference N. Tesla, A new system of alternate current motors and transformers. Trans. Am. Inst. Electr. Eng. 5(V), 308–324 (1888) N. Tesla, A new system of alternate current motors and transformers. Trans. Am. Inst. Electr. Eng. 5(V), 308–324 (1888)
6.
go back to reference S.E. Rauch, L.J. Johnson, Design principles of flux-switch alternators. Trans. Am. Inst. Electr. Eng. 74(3), 1261–1268 (1955) S.E. Rauch, L.J. Johnson, Design principles of flux-switch alternators. Trans. Am. Inst. Electr. Eng. 74(3), 1261–1268 (1955)
7.
go back to reference Y. Liao, F. Liang, T.A. Lipo, A novel permanent magnet motor with doubly salient structure. IEEE Trans. Ind. Appl. 31(56), 1069–1078 (1995)CrossRef Y. Liao, F. Liang, T.A. Lipo, A novel permanent magnet motor with doubly salient structure. IEEE Trans. Ind. Appl. 31(56), 1069–1078 (1995)CrossRef
8.
go back to reference R.P. Deodhar, S. Andersson, I. Boldea, T.J.E. Miller, The flux-reversal machine: a new brushless doubly-salient permanent-magnet machine. IEEE Trans. Ind. Electron. 33(4), 925–934 (1997) R.P. Deodhar, S. Andersson, I. Boldea, T.J.E. Miller, The flux-reversal machine: a new brushless doubly-salient permanent-magnet machine. IEEE Trans. Ind. Electron. 33(4), 925–934 (1997)
9.
go back to reference E. Hoang, A.H. Ben-Ahmed, J. Lucidarme, Switching flux permanent magnet polyphased machines, in Proceeding of Europe Conference Power Electronic Application, Trondheim, Norway, pp. 903–908, September 1997 E. Hoang, A.H. Ben-Ahmed, J. Lucidarme, Switching flux permanent magnet polyphased machines, in Proceeding of Europe Conference Power Electronic Application, Trondheim, Norway, pp. 903–908, September 1997
10.
go back to reference J.K. Kostko, Polyphase reaction synchronous motors. J. Am. Inst. Electr. Eng. 42(11), 1162–1168 (1923)CrossRef J.K. Kostko, Polyphase reaction synchronous motors. J. Am. Inst. Electr. Eng. 42(11), 1162–1168 (1923)CrossRef
11.
go back to reference C.H. Lee, Vernier motor and its design. IEEE Trans. Power Apparatus Syst. 82(66), 343–349 (1963)CrossRef C.H. Lee, Vernier motor and its design. IEEE Trans. Power Apparatus Syst. 82(66), 343–349 (1963)CrossRef
12.
go back to reference S.A. Nasar, D.C.-switched reluctance motor. Proc. IEEE 116(6), 1048–1049 (1969) S.A. Nasar, D.C.-switched reluctance motor. Proc. IEEE 116(6), 1048–1049 (1969)
13.
go back to reference P.L. Alger, R.E. Arnold, The history of induction motors in America. Proc. IEEE 64(9), 1380–1383 (1976)CrossRef P.L. Alger, R.E. Arnold, The history of induction motors in America. Proc. IEEE 64(9), 1380–1383 (1976)CrossRef
14.
go back to reference V.A. Fynn, Single-phase squirrel-cage motor with large starting torque and phase compensation. Proc. Am. Inst. Electr. Eng. 34(10), 2215–2240 (1915)CrossRef V.A. Fynn, Single-phase squirrel-cage motor with large starting torque and phase compensation. Proc. Am. Inst. Electr. Eng. 34(10), 2215–2240 (1915)CrossRef
15.
go back to reference G.R. Slemon, Modeling of induction machines for electric drives. IEEE Trans. Ind. Appl. 25(6), 1126–1131 (1989)CrossRef G.R. Slemon, Modeling of induction machines for electric drives. IEEE Trans. Ind. Appl. 25(6), 1126–1131 (1989)CrossRef
16.
go back to reference E.A. Klingshirn, High phase order induction motors – Part I – Description and theoretical considerations. IEEE Trans. Power Apparatus Syst. PAS-102(1), 47–53 (1983) E.A. Klingshirn, High phase order induction motors – Part I – Description and theoretical considerations. IEEE Trans. Power Apparatus Syst. PAS-102(1), 47–53 (1983)
17.
go back to reference J. Holtz, Sensorless control of induction motor drives. Proc. IEEE 90(8), 1359–1394 (2002)CrossRef J. Holtz, Sensorless control of induction motor drives. Proc. IEEE 90(8), 1359–1394 (2002)CrossRef
18.
go back to reference J. Holtz, Sensorless control of induction machines – with or without signal injection? IEEE Trans. Ind. Electron. 53(1), 7–30 (2006)CrossRef J. Holtz, Sensorless control of induction machines – with or without signal injection? IEEE Trans. Ind. Electron. 53(1), 7–30 (2006)CrossRef
19.
go back to reference P.J. Lawrenson, S.K. Gupta, Developments in performance and theory of segmental-rotor reluctance motors. Proc. Inst. Electr. Eng. 114(5), 645–653 (1967)CrossRef P.J. Lawrenson, S.K. Gupta, Developments in performance and theory of segmental-rotor reluctance motors. Proc. Inst. Electr. Eng. 114(5), 645–653 (1967)CrossRef
20.
go back to reference A.J.O. Cruickshank, A.F. Anderson, R.W. Menzies, Theory and performance of reluctance motors with axially laminated anisotropic rotors. Proc. Inst. Electr. Eng. 1184(7), 887–894 (1971)CrossRef A.J.O. Cruickshank, A.F. Anderson, R.W. Menzies, Theory and performance of reluctance motors with axially laminated anisotropic rotors. Proc. Inst. Electr. Eng. 1184(7), 887–894 (1971)CrossRef
21.
go back to reference T. Matsuo, T.A. Lipo, Rotor design optimization of synchronous reluctance machine. IEEE Trans. Energy Convers. 9(2), 359–365 (1994)CrossRef T. Matsuo, T.A. Lipo, Rotor design optimization of synchronous reluctance machine. IEEE Trans. Energy Convers. 9(2), 359–365 (1994)CrossRef
22.
go back to reference M. Sanada, K. Hiramoto, S. Morimoto, Y. Takeda, Torque ripple improvement for synchronous reluctance motor using an asymmetric flux barrier arrangement. IEEE Trans. Ind. Appl. 40(4), 1076–1082 (2004)CrossRef M. Sanada, K. Hiramoto, S. Morimoto, Y. Takeda, Torque ripple improvement for synchronous reluctance motor using an asymmetric flux barrier arrangement. IEEE Trans. Ind. Appl. 40(4), 1076–1082 (2004)CrossRef
23.
go back to reference N. Bianchi, S. Bolognani, D. Bon, M.D. Pre, Torque harmonic compensation in a synchronous reluctance motor. IEEE Trans. Energy Convers. 23(2), 466–473 (2008)CrossRef N. Bianchi, S. Bolognani, D. Bon, M.D. Pre, Torque harmonic compensation in a synchronous reluctance motor. IEEE Trans. Energy Convers. 23(2), 466–473 (2008)CrossRef
24.
go back to reference G. Qishan, E. Andresen, G. Chun, Airgap permeance of vernier-type, doubly-slotted magnetic structures. IET Electr. Power Appl. 135(1), 17–21 (1988)CrossRef G. Qishan, E. Andresen, G. Chun, Airgap permeance of vernier-type, doubly-slotted magnetic structures. IET Electr. Power Appl. 135(1), 17–21 (1988)CrossRef
25.
go back to reference K.C. Mukherji, A. Tustin, Vernier reluctance motor. Proc. Inst. Electr. Eng. 121(9), 965–974 (1974)CrossRef K.C. Mukherji, A. Tustin, Vernier reluctance motor. Proc. Inst. Electr. Eng. 121(9), 965–974 (1974)CrossRef
26.
go back to reference C. Shi, J. Qiu, R. Lin, A novel self-commutating low-speed reluctance motor for direct-drive applications. IEEE Trans. Ind. Appl. 43(1), 57–65 (2007)CrossRef C. Shi, J. Qiu, R. Lin, A novel self-commutating low-speed reluctance motor for direct-drive applications. IEEE Trans. Ind. Appl. 43(1), 57–65 (2007)CrossRef
27.
go back to reference T. Lin, J. Qiu, C. Shi, Novel dual-excitation self-commutating low speed reluctance motor, in The International Conference of Electrical Machines and Systems, Tokyo, Japan, pp. 1–5, November 2009 T. Lin, J. Qiu, C. Shi, Novel dual-excitation self-commutating low speed reluctance motor, in The International Conference of Electrical Machines and Systems, Tokyo, Japan, pp. 1–5, November 2009
28.
go back to reference T. Lin, J. Qiu, C. Shi, Dual-rotor self-commutating low speed reluctance motors, in The International Conference of Electrical Machines and Systems, Incheon, South Korea, pp. 1733–1738, October 2010 T. Lin, J. Qiu, C. Shi, Dual-rotor self-commutating low speed reluctance motors, in The International Conference of Electrical Machines and Systems, Incheon, South Korea, pp. 1733–1738, October 2010
29.
go back to reference S. Taibi, A. Tounzi, F. Piriou, Study of a stator current excited vernier reluctance machine. IEEE Trans. Energy Convers. 21(4), 823–831 (2006)CrossRefMATH S. Taibi, A. Tounzi, F. Piriou, Study of a stator current excited vernier reluctance machine. IEEE Trans. Energy Convers. 21(4), 823–831 (2006)CrossRefMATH
30.
go back to reference T.J.E. Miller, Optimal design of switched reluctance motors. IEEE Trans. Ind. Electron. 49(1), 15–27 (2002)CrossRef T.J.E. Miller, Optimal design of switched reluctance motors. IEEE Trans. Ind. Electron. 49(1), 15–27 (2002)CrossRef
31.
go back to reference R. Krishnan, R. Arumugam, J.F. Lindsay, Design procedure for switched-reluctance motors. IEEE Trans. Ind. Appl. 24(3), 456–461 (1998)CrossRef R. Krishnan, R. Arumugam, J.F. Lindsay, Design procedure for switched-reluctance motors. IEEE Trans. Ind. Appl. 24(3), 456–461 (1998)CrossRef
32.
go back to reference A.V. Radun, C.A. Ferreira, E. Richter, Two-channel switched reluctance stator/generator results. IEEE Trans. Ind. Appl. 34(5), 1026–1034 (1998)CrossRef A.V. Radun, C.A. Ferreira, E. Richter, Two-channel switched reluctance stator/generator results. IEEE Trans. Ind. Appl. 34(5), 1026–1034 (1998)CrossRef
33.
go back to reference D.A. Torrey, Switched reluctance generators and their control. IEEE Trans. Ind. Electron. 49(1), 3–14 (2002)CrossRef D.A. Torrey, Switched reluctance generators and their control. IEEE Trans. Ind. Electron. 49(1), 3–14 (2002)CrossRef
34.
go back to reference P.C. Desai, M. Krishnamurthy, N. Schofield, A. Emadi, Novel switched reluctance machine configuration with higher number of rotor poles than stator poles: concept to implementation. IEEE Trans. Ind. Electr. 57(2), 649–659 (2010) P.C. Desai, M. Krishnamurthy, N. Schofield, A. Emadi, Novel switched reluctance machine configuration with higher number of rotor poles than stator poles: concept to implementation. IEEE Trans. Ind. Electr. 57(2), 649–659 (2010)
35.
go back to reference A.V. Radun, Design considerations for the switched reluctance motor. IEEE Trans. Ind. Appl. 31(5), 1079–1087 (1995)CrossRef A.V. Radun, Design considerations for the switched reluctance motor. IEEE Trans. Ind. Appl. 31(5), 1079–1087 (1995)CrossRef
36.
go back to reference I. Husain, Minimization of torque ripple in SRM drives. IEEE Trans. Ind. Electron. 49(1), 28–39 (2002)CrossRef I. Husain, Minimization of torque ripple in SRM drives. IEEE Trans. Ind. Electron. 49(1), 28–39 (2002)CrossRef
37.
go back to reference M. Ehsani, B. Fahimi, Elimination of position sensors in switched reluctance motor drives: State of the art and future trends. IEEE Trans. Ind. Electron. 49(1), 40–47 (2002)CrossRef M. Ehsani, B. Fahimi, Elimination of position sensors in switched reluctance motor drives: State of the art and future trends. IEEE Trans. Ind. Electron. 49(1), 40–47 (2002)CrossRef
38.
go back to reference I. Husain, M. Ensani, Rotor position sensing in switched reluctance motor drives by measuring mutually induced voltage. IEEE Trans. Ind. Appl. 30(3), 665–672 (1994)CrossRef I. Husain, M. Ensani, Rotor position sensing in switched reluctance motor drives by measuring mutually induced voltage. IEEE Trans. Ind. Appl. 30(3), 665–672 (1994)CrossRef
39.
go back to reference Y. Fan, K.T. Chau, Design, modeling, and analysis of a brushless doubly fed doubly salient machine for electric vehicles. IEEE Trans. Ind. Appl. 44(3), 727–734 (2008)CrossRef Y. Fan, K.T. Chau, Design, modeling, and analysis of a brushless doubly fed doubly salient machine for electric vehicles. IEEE Trans. Ind. Appl. 44(3), 727–734 (2008)CrossRef
40.
go back to reference Y. Li, C.C. Mi, Doubly salient permanent-magnet machine with skewed rotor and six-state commutating mode. IEEE Trans. Magn. 43(9), 3623–3629 (2007)CrossRef Y. Li, C.C. Mi, Doubly salient permanent-magnet machine with skewed rotor and six-state commutating mode. IEEE Trans. Magn. 43(9), 3623–3629 (2007)CrossRef
41.
go back to reference M. Cheng, K.T. Chau, C.C. Chan, Q. Sun, Control and operation of a new 8/6 doubly salient permanent magnet motor drive. IEEE Trans. Ind. Appl. 39(5), 1363–1372 (2003)CrossRef M. Cheng, K.T. Chau, C.C. Chan, Q. Sun, Control and operation of a new 8/6 doubly salient permanent magnet motor drive. IEEE Trans. Ind. Appl. 39(5), 1363–1372 (2003)CrossRef
42.
go back to reference K.T. Chau, M. Cheng, C.C. Chan, Nonlinear magnetic circuit analysis for a novel stator doubly fed doubly salient machine. IEEE Trans. Magn. 38(5), 2382–2384 (2002)CrossRef K.T. Chau, M. Cheng, C.C. Chan, Nonlinear magnetic circuit analysis for a novel stator doubly fed doubly salient machine. IEEE Trans. Magn. 38(5), 2382–2384 (2002)CrossRef
43.
go back to reference Z. Zhang, Y. Yan, Y. Tao, A new topology of low speed doubly salient brushless DC generator for wind power generation. IEEE Trans. Magn. 48(3), 1227–1233 (2012)CrossRef Z. Zhang, Y. Yan, Y. Tao, A new topology of low speed doubly salient brushless DC generator for wind power generation. IEEE Trans. Magn. 48(3), 1227–1233 (2012)CrossRef
44.
go back to reference D. Zhu, X. Qiu, N. Zhou, Y. Yan, A novel five phase fault tolerant doubly salient electromagnetic generator for direct driven wind turbine, in The International Conference of Electrical Machines and Systems, Wuhan, China, pp. 2418–2422, October 2008 D. Zhu, X. Qiu, N. Zhou, Y. Yan, A novel five phase fault tolerant doubly salient electromagnetic generator for direct driven wind turbine, in The International Conference of Electrical Machines and Systems, Wuhan, China, pp. 2418–2422, October 2008
45.
go back to reference X. Liu, Z.Q. Zhu, Stator/rotor pole combinations and winding configurations of variable flux reluctance machines. IEEE Trans. Ind. Appl. 50(6), 3675–3684 (2014)CrossRef X. Liu, Z.Q. Zhu, Stator/rotor pole combinations and winding configurations of variable flux reluctance machines. IEEE Trans. Ind. Appl. 50(6), 3675–3684 (2014)CrossRef
46.
go back to reference Z. Zhang, Y. Zhou, Y. Yan, Feature investigation of a new dual-stator doubly salient brushless DC generator with and without rotor-yoke, in The International Conference of Electrical Machines and Systems, Busan, South Korea, pp. 1026–1031, October 2013 Z. Zhang, Y. Zhou, Y. Yan, Feature investigation of a new dual-stator doubly salient brushless DC generator with and without rotor-yoke, in The International Conference of Electrical Machines and Systems, Busan, South Korea, pp. 1026–1031, October 2013
47.
go back to reference Y. Tao, Z. Zhang, Y. Yan, Z. Bo, Analysis of a new dual-stator doubly salient brushless DC generator, in World Non-Grid-Connected Wind Power and Energy Conference, Nanjing, China, pp. 1–4, November 2010 Y. Tao, Z. Zhang, Y. Yan, Z. Bo, Analysis of a new dual-stator doubly salient brushless DC generator, in World Non-Grid-Connected Wind Power and Energy Conference, Nanjing, China, pp. 1–4, November 2010
48.
go back to reference W. Dai, T. Xiu, H. Wang, Y. Yan, Control of a novel dual stator doubly salient aircraft engine starter-generator, in The 37th IEEE Power Electronics Specialists Conference, Jeju, South Korea, pp. 1–5, June 2006 W. Dai, T. Xiu, H. Wang, Y. Yan, Control of a novel dual stator doubly salient aircraft engine starter-generator, in The 37th IEEE Power Electronics Specialists Conference, Jeju, South Korea, pp. 1–5, June 2006
49.
go back to reference Z.Q. Zhu, J.T. Chen, Advanced flux-switching permanent magnet brushless machines. IEEE Trans. Magn. 46(6), 1447–1453 (2010)CrossRef Z.Q. Zhu, J.T. Chen, Advanced flux-switching permanent magnet brushless machines. IEEE Trans. Magn. 46(6), 1447–1453 (2010)CrossRef
50.
go back to reference C. Pollock, H. Pollock, R. Barron, J.R. Coles, D. Moule, A. Court, R. Sutton, Flux-switching motors for automotive applications. IEEE Trans. Ind. Appl. 42(5), 1177–1184 (2006)CrossRef C. Pollock, H. Pollock, R. Barron, J.R. Coles, D. Moule, A. Court, R. Sutton, Flux-switching motors for automotive applications. IEEE Trans. Ind. Appl. 42(5), 1177–1184 (2006)CrossRef
51.
go back to reference Y. Tang, J.J.H. Paulides, T.E. Motoasca, E.A. Lomonova, Flux-switching machine with DC excitation. IEEE Trans. Magn. 48(11), 3583–3586 (2012)CrossRef Y. Tang, J.J.H. Paulides, T.E. Motoasca, E.A. Lomonova, Flux-switching machine with DC excitation. IEEE Trans. Magn. 48(11), 3583–3586 (2012)CrossRef
52.
go back to reference A. Zulu, B.C. Mecrow, M. Armstrong, A wound-field three-phase flux-switching synchronous motor with all excitation sources on the stator. IEEE Trans. Ind. Appl. 46(6), 2363–2371 (2010)CrossRef A. Zulu, B.C. Mecrow, M. Armstrong, A wound-field three-phase flux-switching synchronous motor with all excitation sources on the stator. IEEE Trans. Ind. Appl. 46(6), 2363–2371 (2010)CrossRef
53.
go back to reference C. Pollock, M. Brackley, Comparison of the acoustic noise of a flux-switching and a switched reluctance drive. IEEE Trans. Ind. Appl. 39(3), 826–834 (2003)CrossRef C. Pollock, M. Brackley, Comparison of the acoustic noise of a flux-switching and a switched reluctance drive. IEEE Trans. Ind. Appl. 39(3), 826–834 (2003)CrossRef
54.
go back to reference C. Yu, S. Niu, Development of a magnetless flux switching machine for rooftop wind power generation. IEEE Trans. Energy Convers. 30(4), 1703–1711 (2015)CrossRef C. Yu, S. Niu, Development of a magnetless flux switching machine for rooftop wind power generation. IEEE Trans. Energy Convers. 30(4), 1703–1711 (2015)CrossRef
55.
go back to reference J. Faiz, J. Raddadi, J.W. Finch, Spice-based dynamic analysis of a switched reluctance motor with multiple teeth per stator pole. IEEE Trans. Magn. 38(4), 1780–1788 (2002)CrossRef J. Faiz, J. Raddadi, J.W. Finch, Spice-based dynamic analysis of a switched reluctance motor with multiple teeth per stator pole. IEEE Trans. Magn. 38(4), 1780–1788 (2002)CrossRef
56.
go back to reference S.C. Oh, A. Emadi, Test and simulation of axial flux-motor characteristics for hybrid electric vehicles. IEEE Trans. Veh. Technol. 53(3), 912–919 (2004)CrossRef S.C. Oh, A. Emadi, Test and simulation of axial flux-motor characteristics for hybrid electric vehicles. IEEE Trans. Veh. Technol. 53(3), 912–919 (2004)CrossRef
57.
go back to reference F. Profumo, Z. Zhang, A. Tenconi, Axial flux machines drives: a new viable solution for electric cars. IEEE Trans. Ind. Electron. 44(1), 39–45 (1997)CrossRef F. Profumo, Z. Zhang, A. Tenconi, Axial flux machines drives: a new viable solution for electric cars. IEEE Trans. Ind. Electron. 44(1), 39–45 (1997)CrossRef
58.
go back to reference Z. Nasiri-Gheidari, H. Lesani, Investigation of characteristics of a single-phase axial flux induction motor using three-dimensional finite element method and d-q model. IET Electr. Power Appl. 7(1), 47–57 (2013)CrossRef Z. Nasiri-Gheidari, H. Lesani, Investigation of characteristics of a single-phase axial flux induction motor using three-dimensional finite element method and d-q model. IET Electr. Power Appl. 7(1), 47–57 (2013)CrossRef
59.
go back to reference R. Madhavan, B.G. Fernandes, Performance improvement in the axial flux-segmented rotor-switched reluctance motor. IEEE Trans. Energy Convers. 29(3), 641–651 (2014)CrossRef R. Madhavan, B.G. Fernandes, Performance improvement in the axial flux-segmented rotor-switched reluctance motor. IEEE Trans. Energy Convers. 29(3), 641–651 (2014)CrossRef
60.
go back to reference N. Bernard, H.B. Ahmed, B. Multon, Design and modeling of a slotless homopolar axial-field synchronous machine for a flywheel accumulator. IEEE Trans. Ind. Appl. 40(3), 755–762 (2004)CrossRef N. Bernard, H.B. Ahmed, B. Multon, Design and modeling of a slotless homopolar axial-field synchronous machine for a flywheel accumulator. IEEE Trans. Ind. Appl. 40(3), 755–762 (2004)CrossRef
61.
go back to reference C.H. Joshi, C.B. Prum, R.F. Schiferl, D.I. Driscoll, Demonstration of two synchronous motors using high temperature superconducting field coils. IEEE Trans. Appl. Supercond. 5(23), 968–971 (1995)CrossRef C.H. Joshi, C.B. Prum, R.F. Schiferl, D.I. Driscoll, Demonstration of two synchronous motors using high temperature superconducting field coils. IEEE Trans. Appl. Supercond. 5(23), 968–971 (1995)CrossRef
62.
go back to reference F.N. Werfel, U. Flogel-Delor, D. Wippich, R. Rothfeld, A large scale approach of bulk HTS to the electric utility area. IEEE Trans. Appl. Supercond. 9(2), 2018–2021 (1999)CrossRef F.N. Werfel, U. Flogel-Delor, D. Wippich, R. Rothfeld, A large scale approach of bulk HTS to the electric utility area. IEEE Trans. Appl. Supercond. 9(2), 2018–2021 (1999)CrossRef
63.
go back to reference Y. Wang, J. Sun, Z. Zou, Z. Wang, K.T. Chau, Design and analysis of a HTS flux-switching machine for wind energy conversion. IEEE Trans. Appl. Supercond. 23(3), 5000904 (2013)CrossRef Y. Wang, J. Sun, Z. Zou, Z. Wang, K.T. Chau, Design and analysis of a HTS flux-switching machine for wind energy conversion. IEEE Trans. Appl. Supercond. 23(3), 5000904 (2013)CrossRef
64.
go back to reference J. Rao, W. Xu, Modular stator high temperature superconducting flux-switching machines. IEEE Trans. Appl. Supercond. 24(5), 0601405 (2014) J. Rao, W. Xu, Modular stator high temperature superconducting flux-switching machines. IEEE Trans. Appl. Supercond. 24(5), 0601405 (2014)
65.
go back to reference I. Boldea, S.A. Nasar, Linear electric actuators and generators. IEEE Trans. Energy Convers. 14(3), 712–717 (1999)CrossRef I. Boldea, S.A. Nasar, Linear electric actuators and generators. IEEE Trans. Energy Convers. 14(3), 712–717 (1999)CrossRef
66.
go back to reference B.S. Lee, H.K. Bae, P. Vijayraghavan, R. Krishnan, Design of a linear switched reluctance machine. IEEE Trans. Ind. Appl. 36(6), 1571–1580 (2010) B.S. Lee, H.K. Bae, P. Vijayraghavan, R. Krishnan, Design of a linear switched reluctance machine. IEEE Trans. Ind. Appl. 36(6), 1571–1580 (2010)
67.
go back to reference A.S. Abdel-Khalik, S. Ahmed, A. Massoud, A five-phase linear induction machine with planar modular winding, in The IEEE Conference on Industrial Technology, Seville, Spain, pp. 580–585, March 2015 A.S. Abdel-Khalik, S. Ahmed, A. Massoud, A five-phase linear induction machine with planar modular winding, in The IEEE Conference on Industrial Technology, Seville, Spain, pp. 580–585, March 2015
68.
go back to reference W. Li, K.T. Chau, C. Liu, C. Qiu, Design and analysis of a flux-controllable linear variable reluctance machine. IEEE Trans. Appl. Supercond. 24(3), 5200604 (2014) W. Li, K.T. Chau, C. Liu, C. Qiu, Design and analysis of a flux-controllable linear variable reluctance machine. IEEE Trans. Appl. Supercond. 24(3), 5200604 (2014)
69.
go back to reference S.E. Abdollahi, M. Mirzayee, M. Mirsalim, Design and analysis of a double-sided linear induction motor for transportation. IEEE Trans. Magn. 51(7), 8106307 (2015)CrossRef S.E. Abdollahi, M. Mirzayee, M. Mirsalim, Design and analysis of a double-sided linear induction motor for transportation. IEEE Trans. Magn. 51(7), 8106307 (2015)CrossRef
70.
go back to reference Y. Wang, Z. Deng, An integration algorithm for stator flux estimation of a direct-torque-controlled electrical excitation flux-switched generator. IEEE Trans. Energy Convers. 27(2), 411–420 (2012)CrossRef Y. Wang, Z. Deng, An integration algorithm for stator flux estimation of a direct-torque-controlled electrical excitation flux-switched generator. IEEE Trans. Energy Convers. 27(2), 411–420 (2012)CrossRef
71.
go back to reference Y. Wang, Z.Q. Deng, Analysis of electromagnetic performance and control schemes of electrical excitation flux-switching machine for DC power systems. IEEE Trans. Energy Convers. 27(4), 844–855 (2012)CrossRef Y. Wang, Z.Q. Deng, Analysis of electromagnetic performance and control schemes of electrical excitation flux-switching machine for DC power systems. IEEE Trans. Energy Convers. 27(4), 844–855 (2012)CrossRef
Metadata
Title
Overview of Magnetless Doubly Salient Brushless Machines
Author
Christopher H. T. Lee
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7077-8_2