Skip to main content
Top

2013 | OriginalPaper | Chapter

9. Oxidation Catalysts for Green Chemistry

Author : Colin P. Horwitz

Published in: Innovations in Green Chemistry and Green Engineering

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The term “green catalyst” has no single definition. Currently, it is most commonly associated with catalysts that are recoverable or prepared from readily available starting materials. A truer definition, although circular, is that a green oxidation catalyst, or any catalyst for that matter, is one that conforms to green chemistry and green engineering principles. Creating a green oxidation catalyst a priori is a complex task because every aspect of the catalyst needs examination and to be of practical value it must provide a cost benefit to the end-user. Here, some general guidelines for what a green oxidation catalyst might be are presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Walker JD, Enache M, Dearden JD (2006) Quantitative cationic activity relationships for predicting toxicity of metal ions from physicochemical properties and natural occurrence levels. QSAR Comb Sci 26:522–527CrossRef Walker JD, Enache M, Dearden JD (2006) Quantitative cationic activity relationships for predicting toxicity of metal ions from physicochemical properties and natural occurrence levels. QSAR Comb Sci 26:522–527CrossRef
2.
go back to reference Walker JD, Enache M, Dearden JC (2003) Quantitative cationic-activity relationships for predicting toxicity of metals. Environ toxicology chemistry SETAC 22:1916–1935CrossRef Walker JD, Enache M, Dearden JC (2003) Quantitative cationic-activity relationships for predicting toxicity of metals. Environ toxicology chemistry SETAC 22:1916–1935CrossRef
4.
go back to reference Min BK, Friend CM (2007) Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation. Chem Rev 107:2709–2724CrossRef Min BK, Friend CM (2007) Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation. Chem Rev 107:2709–2724CrossRef
5.
go back to reference Anastas PT, Kirchhoff MM, Williamson TC (2001) Catalysis as a foundational pillar of green chemistry. Appl Catal A Gen 221:3–13CrossRef Anastas PT, Kirchhoff MM, Williamson TC (2001) Catalysis as a foundational pillar of green chemistry. Appl Catal A Gen 221:3–13CrossRef
6.
go back to reference Anastas PT, Zimmerman JB (2003) Peer reviewed: design through the 12 principles of green engineering. Environ Sci Technol 37:94–101CrossRef Anastas PT, Zimmerman JB (2003) Peer reviewed: design through the 12 principles of green engineering. Environ Sci Technol 37:94–101CrossRef
7.
go back to reference World Commission on Environment and Development (1987) Our common future. Oxford University Press, Oxford World Commission on Environment and Development (1987) Our common future. Oxford University Press, Oxford
8.
go back to reference Anastas PT, Williamson TC (1996) Green chemistry: an overview. ACS Symp Ser 626:1–17CrossRef Anastas PT, Williamson TC (1996) Green chemistry: an overview. ACS Symp Ser 626:1–17CrossRef
9.
go back to reference Anastas PT, Warner JC (1998) Green: chemistry theory and practice. Oxford University Press, Oxford Anastas PT, Warner JC (1998) Green: chemistry theory and practice. Oxford University Press, Oxford
10.
go back to reference Centi G, Perathoner S (2003) Catalysis and sustainable (green) chemistry. Catal Today 77:287–297CrossRef Centi G, Perathoner S (2003) Catalysis and sustainable (green) chemistry. Catal Today 77:287–297CrossRef
11.
go back to reference Wsniak J (2000) Jöns Jacob Berzelius a guide to the perplexed chemist. Chem Educ 5:343–350CrossRef Wsniak J (2000) Jöns Jacob Berzelius a guide to the perplexed chemist. Chem Educ 5:343–350CrossRef
12.
go back to reference Berzelius JJ (1836) Jahres-Bericht über die Fortschritte der Physichen Wissenschaften. 15:237–245 H. Laupp, Tübingen Berzelius JJ (1836) Jahres-Bericht über die Fortschritte der Physichen Wissenschaften. 15:237–245 H. Laupp, Tübingen
13.
go back to reference Roberts M (2000) Birth of the catalytic concept (1800–1900). Catal Lett 67:1–4CrossRef Roberts M (2000) Birth of the catalytic concept (1800–1900). Catal Lett 67:1–4CrossRef
14.
go back to reference Brégeault J-M (2003) Transition-metal complexes for liquid-phase catalytic oxidation: some aspects of industrial reactions and of emerging technologies. J Chem Soc Dalton Trans 17:3289–3302 Brégeault J-M (2003) Transition-metal complexes for liquid-phase catalytic oxidation: some aspects of industrial reactions and of emerging technologies. J Chem Soc Dalton Trans 17:3289–3302
15.
go back to reference Smith MB, March J (2007) March's advanced organic chemistry: reactions, mechanisms, and structure, 6th edn. Wiley, Hoboken Smith MB, March J (2007) March's advanced organic chemistry: reactions, mechanisms, and structure, 6th edn. Wiley, Hoboken
16.
go back to reference Katsuki T, Sharpless KB (1980) The first practical method for asymmetric epoxidation. J Am Chem Soc 102:5974–5976CrossRef Katsuki T, Sharpless KB (1980) The first practical method for asymmetric epoxidation. J Am Chem Soc 102:5974–5976CrossRef
17.
go back to reference Sheehan RJ (2005) Terephthalic acid, dimethyl terephthalate, and isophthalic acid. In: Book ullmann's encyclopedia of industrial chemistry. Wiley, Weinheim, pp 1–13 Sheehan RJ (2005) Terephthalic acid, dimethyl terephthalate, and isophthalic acid. In: Book ullmann's encyclopedia of industrial chemistry. Wiley, Weinheim, pp 1–13
18.
go back to reference Cavani F, Teles JH (2009) Sustainability in catalytic oxidation: an alternative approach or a structural evolution? ChemSusChem 2:508–534CrossRef Cavani F, Teles JH (2009) Sustainability in catalytic oxidation: an alternative approach or a structural evolution? ChemSusChem 2:508–534CrossRef
19.
go back to reference Gogate P, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Enviro Res 8:501–551CrossRef Gogate P, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Enviro Res 8:501–551CrossRef
20.
go back to reference van Haveren J, Scott EL, Sanders J (2008) Bulk chemicals from biomass. Biofuels Bioprod Biorefin 2:41–57CrossRef van Haveren J, Scott EL, Sanders J (2008) Bulk chemicals from biomass. Biofuels Bioprod Biorefin 2:41–57CrossRef
21.
go back to reference Werpy T, Holladay J, White J, Peterson G, Bozell JJ, Aden A, Manheim A (2004) Top value added chemicals from biomass, vol 1.), Results of screening for potential candidates from sugars and synthetic gas U.S. Department of Energy, NREL/TP-510-35523 Werpy T, Holladay J, White J, Peterson G, Bozell JJ, Aden A, Manheim A (2004) Top value added chemicals from biomass, vol 1.), Results of screening for potential candidates from sugars and synthetic gas U.S. Department of Energy, NREL/TP-510-35523
22.
go back to reference Cavani F, Ballarini N, Luciani S (2009) Catalysis for society:towards improved process efficiency in catalytic selective oxidations. Top Catal 52:935–947CrossRef Cavani F, Ballarini N, Luciani S (2009) Catalysis for society:towards improved process efficiency in catalytic selective oxidations. Top Catal 52:935–947CrossRef
23.
go back to reference Cavani F, Ballarini N (2009) Recent achievements and challenges for a greener chemical industry. In: Mizuno N (ed) Modern heterogenous oxidation catalysis: design, reactions and characterization. Wiley, Weinheim, pp 289–331CrossRef Cavani F, Ballarini N (2009) Recent achievements and challenges for a greener chemical industry. In: Mizuno N (ed) Modern heterogenous oxidation catalysis: design, reactions and characterization. Wiley, Weinheim, pp 289–331CrossRef
24.
go back to reference Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208CrossRef Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208CrossRef
25.
go back to reference Teng Y, Jiao x, Wang J, Xu W, Yang J (2009) Environmentally geochemical characteristics of vanadium in the topsoil in the Panzhihua mining area, Sichuan Province. China Chin J Geochem 28:105–111CrossRef Teng Y, Jiao x, Wang J, Xu W, Yang J (2009) Environmentally geochemical characteristics of vanadium in the topsoil in the Panzhihua mining area, Sichuan Province. China Chin J Geochem 28:105–111CrossRef
26.
go back to reference Hermans I, Spier ES, Neuenschwander U, Turrá N, Baiker A (2009) Selective oxidation catalysis: opportunities and challenges. Top Catal 52:1162–1174CrossRef Hermans I, Spier ES, Neuenschwander U, Turrá N, Baiker A (2009) Selective oxidation catalysis: opportunities and challenges. Top Catal 52:1162–1174CrossRef
27.
go back to reference Clerici MG, Bellussi G, Romano U (1991) Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite. J Catal 129:159–167CrossRef Clerici MG, Bellussi G, Romano U (1991) Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite. J Catal 129:159–167CrossRef
28.
go back to reference Clerici MG (2009) Titanium silicalite-1. In: Jackson SD, Hargreaves JSJ (eds) Metal oxide catalysis, vol 2. Wiley, Weinheim, pp 705–754 Clerici MG (2009) Titanium silicalite-1. In: Jackson SD, Hargreaves JSJ (eds) Metal oxide catalysis, vol 2. Wiley, Weinheim, pp 705–754
29.
go back to reference Nijhuis TA, Makkee M, Moulijn JA, Weckhuysen, BM (2006) The production of propene oxide: A catalytic processes and recent developments. Ind Eng Chem Res 45:3447–3459CrossRef Nijhuis TA, Makkee M, Moulijn JA, Weckhuysen, BM (2006) The production of propene oxide: A catalytic processes and recent developments. Ind Eng Chem Res 45:3447–3459CrossRef
30.
go back to reference Nijhuis TA, Huizinga BJ, Makkee M, Moulijn JA (1999) Direct epoxidation of propene using gold dispersed on TS-1 and other titanium-containing supports. Ind Eng Chem Res 38(3):884CrossRef Nijhuis TA, Huizinga BJ, Makkee M, Moulijn JA (1999) Direct epoxidation of propene using gold dispersed on TS-1 and other titanium-containing supports. Ind Eng Chem Res 38(3):884CrossRef
31.
go back to reference Stare J, Henson NJ, Eckert J (2009) Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1. J Chem Info Mod 49:833–846CrossRef Stare J, Henson NJ, Eckert J (2009) Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1. J Chem Info Mod 49:833–846CrossRef
32.
go back to reference Li YG, Lee YM, Porter JF (2002) The synthesis and characterization of titanium silicalite-1. J Mater Sci 37:1959–1965CrossRef Li YG, Lee YM, Porter JF (2002) The synthesis and characterization of titanium silicalite-1. J Mater Sci 37:1959–1965CrossRef
33.
go back to reference Baccile N, Babonneau F, Thomas B, Coradin T (2009) Introducing ecodesign in silica solìgel materials. J Mater Chem 19:8537–8559CrossRef Baccile N, Babonneau F, Thomas B, Coradin T (2009) Introducing ecodesign in silica solìgel materials. J Mater Chem 19:8537–8559CrossRef
34.
go back to reference Sheldon RA (1992) Organic synthesis – past, present and future. Chem Ind Lond 23:903–906 Sheldon RA (1992) Organic synthesis – past, present and future. Chem Ind Lond 23:903–906
35.
go back to reference Sheldon RA (1997) Catalysis: the key to waste minimization. J Chem Technol Biotechnol 68:381–388CrossRef Sheldon RA (1997) Catalysis: the key to waste minimization. J Chem Technol Biotechnol 68:381–388CrossRef
36.
37.
go back to reference Calvo-Flores FG (2009) Sustainable chemistry metrics. ChemSusChem 2:905–919CrossRef Calvo-Flores FG (2009) Sustainable chemistry metrics. ChemSusChem 2:905–919CrossRef
38.
go back to reference Eckelman MJ, Zimmerman JB, Anastas PT (2008) Toward green nano: e-factor analysis of several nanomaterial syntheses. J Ind Ecol 12:316–328CrossRef Eckelman MJ, Zimmerman JB, Anastas PT (2008) Toward green nano: e-factor analysis of several nanomaterial syntheses. J Ind Ecol 12:316–328CrossRef
39.
go back to reference Dahl JeA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269CrossRef Dahl JeA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269CrossRef
40.
go back to reference Hermans I, Peeters J, Jacobs PA (2008) Autoxidation chemistry: bridging the gap between homogeneous radical chemistry and (heterogeneous) catalysis. Top Catal 48:41–48CrossRef Hermans I, Peeters J, Jacobs PA (2008) Autoxidation chemistry: bridging the gap between homogeneous radical chemistry and (heterogeneous) catalysis. Top Catal 48:41–48CrossRef
41.
go back to reference Thomas JM, Raja R (2006) The advantages and future potential of single-site heterogeneous catalysts. Top Catal 40:3–17CrossRef Thomas JM, Raja R (2006) The advantages and future potential of single-site heterogeneous catalysts. Top Catal 40:3–17CrossRef
42.
go back to reference Niu W, Draths KM, Frost JW (2002) Benzene-free synthesis of adipic acid. Biotechnol Progr 18:201–211CrossRef Niu W, Draths KM, Frost JW (2002) Benzene-free synthesis of adipic acid. Biotechnol Progr 18:201–211CrossRef
43.
go back to reference Sato K, Aoki M, Noyori R (1998) A “Green” route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science 281:1646–1647CrossRef Sato K, Aoki M, Noyori R (1998) A “Green” route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science 281:1646–1647CrossRef
44.
go back to reference Strigul N, Koutsospyros A, Christodoulatos C (2010) Tungsten speciation and toxicity: acute toxicity of mono – and poly-tungstates to fish. Ecotoxicol Environ Saf 73:164–171CrossRef Strigul N, Koutsospyros A, Christodoulatos C (2010) Tungsten speciation and toxicity: acute toxicity of mono – and poly-tungstates to fish. Ecotoxicol Environ Saf 73:164–171CrossRef
45.
go back to reference Smith BJ, Patrick VA (2000) Quantitative determination of sodium metatungstate speciation by 183W NMR spectroscopy. Aust J Chem 53:965–970CrossRef Smith BJ, Patrick VA (2000) Quantitative determination of sodium metatungstate speciation by 183W NMR spectroscopy. Aust J Chem 53:965–970CrossRef
46.
go back to reference Deng Y, Ma Z, Wang K, Chen J (1999) Clean synthesis of adipic acid by direct oxidation of cyclohexene with H2O2 over peroxytungstate-organic complex catalysts. Green Chem 1:275–276CrossRef Deng Y, Ma Z, Wang K, Chen J (1999) Clean synthesis of adipic acid by direct oxidation of cyclohexene with H2O2 over peroxytungstate-organic complex catalysts. Green Chem 1:275–276CrossRef
47.
go back to reference Buonomenna MG, Golemme G, De Santo MP, Drioli E (2010) Direct oxidation of cyclohexene with inert polymeric membrane reactor. Org Proc Res Dev 14:252–258CrossRef Buonomenna MG, Golemme G, De Santo MP, Drioli E (2010) Direct oxidation of cyclohexene with inert polymeric membrane reactor. Org Proc Res Dev 14:252–258CrossRef
48.
go back to reference York APE, Xiao T, Green MLH (2003) Brief overview of the partial oxidation of methane to synthesis gas. Top Catal 22:345–358CrossRef York APE, Xiao T, Green MLH (2003) Brief overview of the partial oxidation of methane to synthesis gas. Top Catal 22:345–358CrossRef
49.
go back to reference Enger BC, Lødeng R, Holmen A (2008) A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl Catal A Gen 346:1–27CrossRef Enger BC, Lødeng R, Holmen A (2008) A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl Catal A Gen 346:1–27CrossRef
50.
go back to reference Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ, Bell AT, Bercaw JE, Creutz C, Dinjus E, Dixon DA, Domen K, DuBois DL, Eckert J, Fujita E, Gibson DH, Goddard WA, Goodman DW, Keller J, Kubas GJ, Kung HH, Lyons JE, Manzer LE, Marks TJ, Morokuma K, Nicholas KM, Periana R, Que L, Rostrup-Nielson J, Sachtler WMH, Schmidt LD, Sen A, Somorjai GA, Stair PC, Stults BR, Tumas W (2001) Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem Rev 101:953–996CrossRef Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ, Bell AT, Bercaw JE, Creutz C, Dinjus E, Dixon DA, Domen K, DuBois DL, Eckert J, Fujita E, Gibson DH, Goddard WA, Goodman DW, Keller J, Kubas GJ, Kung HH, Lyons JE, Manzer LE, Marks TJ, Morokuma K, Nicholas KM, Periana R, Que L, Rostrup-Nielson J, Sachtler WMH, Schmidt LD, Sen A, Somorjai GA, Stair PC, Stults BR, Tumas W (2001) Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem Rev 101:953–996CrossRef
51.
go back to reference Kirillova MV, Kozlov YN, Shul'pina LS, Lyakin OY, Kirillov AM, Talsi EP, Pombeiro AJL, Shul'pin GB (2009) Remarkably fast oxidation of alkanes by hydrogen peroxide catalyzed by a tetracopper(II) triethanolaminate complex: promoting effects of acid co-catalysts and water, kinetic and mechanistic features. J Catal 268:26–38CrossRef Kirillova MV, Kozlov YN, Shul'pina LS, Lyakin OY, Kirillov AM, Talsi EP, Pombeiro AJL, Shul'pin GB (2009) Remarkably fast oxidation of alkanes by hydrogen peroxide catalyzed by a tetracopper(II) triethanolaminate complex: promoting effects of acid co-catalysts and water, kinetic and mechanistic features. J Catal 268:26–38CrossRef
52.
go back to reference Beckers J, Rothenberg G (2010) Sustainable selective oxidations using ceria-based materials. Green Chem 12:939CrossRef Beckers J, Rothenberg G (2010) Sustainable selective oxidations using ceria-based materials. Green Chem 12:939CrossRef
53.
go back to reference Czuprat O, Werth S, Schirrmeister S, Schiestel T, Caro J (2009) Olefin production by a multistep oxidative dehydrogenation in a perovskite hollow-fiber membrane reactor. ChemCatChem 1:401–405CrossRef Czuprat O, Werth S, Schirrmeister S, Schiestel T, Caro J (2009) Olefin production by a multistep oxidative dehydrogenation in a perovskite hollow-fiber membrane reactor. ChemCatChem 1:401–405CrossRef
54.
go back to reference Madeira LM, Portela MF (2002) Catalytic oxidative dehydrogenation of n-butane. Catal Rev 44:247–286CrossRef Madeira LM, Portela MF (2002) Catalytic oxidative dehydrogenation of n-butane. Catal Rev 44:247–286CrossRef
55.
go back to reference Grabowski R (2006) Kinetics of oxidative dehydrogenation of C2-C3 alkanes on oxide catalysts. Catal Rev 48:199–268CrossRef Grabowski R (2006) Kinetics of oxidative dehydrogenation of C2-C3 alkanes on oxide catalysts. Catal Rev 48:199–268CrossRef
56.
go back to reference Meth-Cohn O, Smith M (1994) What did W. H. Perkin actually make when he oxidized aniline to obtain mauveine? Perkin Trans 1:5–7 Meth-Cohn O, Smith M (1994) What did W. H. Perkin actually make when he oxidized aniline to obtain mauveine? Perkin Trans 1:5–7
57.
go back to reference Sousa MM, Melo MJ, Parola AJ, Morris PJT, Rzepa HS, de Melo JSS (2008) A study in mauve: unveiling Perkin's dye in historic samples. Chem Euro J 14:8507–8513CrossRef Sousa MM, Melo MJ, Parola AJ, Morris PJT, Rzepa HS, de Melo JSS (2008) A study in mauve: unveiling Perkin's dye in historic samples. Chem Euro J 14:8507–8513CrossRef
58.
go back to reference He L, Wang L-C, Sun H, Ni J, Cao Y, He H-Y, Fan K-N (2009) Efficient and selective room-temperature gold-catalyzed reduction of nitro compounds with CO and H2O as the hydrogen source. Angew Chem Int Ed 48:9538–9541CrossRef He L, Wang L-C, Sun H, Ni J, Cao Y, He H-Y, Fan K-N (2009) Efficient and selective room-temperature gold-catalyzed reduction of nitro compounds with CO and H2O as the hydrogen source. Angew Chem Int Ed 48:9538–9541CrossRef
59.
go back to reference Li S-C, Diebold U (2010) Reactivity of TiO2 rutile and anatase surfaces toward nitroaromatics. J Am Chem Soc 132:64–66CrossRef Li S-C, Diebold U (2010) Reactivity of TiO2 rutile and anatase surfaces toward nitroaromatics. J Am Chem Soc 132:64–66CrossRef
60.
go back to reference Mann PJG, Saunders BC (1935) Peroxidase action. I. The oxidation of aniline. Proc R Soc Lond B Biol Sci 119:47–60CrossRef Mann PJG, Saunders BC (1935) Peroxidase action. I. The oxidation of aniline. Proc R Soc Lond B Biol Sci 119:47–60CrossRef
61.
go back to reference Sheldon RA, Kochi JK (1981) Metal-catalyzed oxidations of organic compounds. Academic, New York Sheldon RA, Kochi JK (1981) Metal-catalyzed oxidations of organic compounds. Academic, New York
62.
go back to reference Collins TJ (1994) Designing ligands for oxidizing complexes. Acc Chem Res 27:279–285CrossRef Collins TJ (1994) Designing ligands for oxidizing complexes. Acc Chem Res 27:279–285CrossRef
63.
go back to reference Schmid A, Dordick J, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258CrossRef Schmid A, Dordick J, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258CrossRef
64.
go back to reference Schoemaker HE, Mink D, Wubbolts MG (2003) Dispelling the myths – biocatalysis in industrial synthesis. Science 299:1694–1697CrossRef Schoemaker HE, Mink D, Wubbolts MG (2003) Dispelling the myths – biocatalysis in industrial synthesis. Science 299:1694–1697CrossRef
65.
go back to reference Yuryev R, Liese A (2010) Biocatalysis: the outcast. ChemCatChem 2:103–107CrossRef Yuryev R, Liese A (2010) Biocatalysis: the outcast. ChemCatChem 2:103–107CrossRef
66.
go back to reference Matsuda T, Yamanaka R, Nakamura K (2009) Recent progress in biocatalysis for asymmetric oxidation and reduction. Tetrahedron Asymmetr 20:513–557CrossRef Matsuda T, Yamanaka R, Nakamura K (2009) Recent progress in biocatalysis for asymmetric oxidation and reduction. Tetrahedron Asymmetr 20:513–557CrossRef
67.
go back to reference van de Velde F, Lourenço ND, Bakker M, van Rantwijk F, Sheldon RA (2000) Improved operational stability of peroxidases by coimmobilization with glucose oxidase. Biotechnol Bioeng 69:286–291CrossRef van de Velde F, Lourenço ND, Bakker M, van Rantwijk F, Sheldon RA (2000) Improved operational stability of peroxidases by coimmobilization with glucose oxidase. Biotechnol Bioeng 69:286–291CrossRef
68.
go back to reference Kuhn D, Kholiq MA, Heinzle E, Bühler B, Schmid A (2010) Intensification and economic and ecological assessment of a biocatalytic oxyfunctionalization process. Green Chem 12:815–827CrossRef Kuhn D, Kholiq MA, Heinzle E, Bühler B, Schmid A (2010) Intensification and economic and ecological assessment of a biocatalytic oxyfunctionalization process. Green Chem 12:815–827CrossRef
69.
go back to reference Que L Jr, Tolman WB (2008) Biologically inspired oxidation catalysis. Nature 455:333–340CrossRef Que L Jr, Tolman WB (2008) Biologically inspired oxidation catalysis. Nature 455:333–340CrossRef
70.
go back to reference Costas M, Chen K, Que L Jr (2000) Biomimetic nonheme iron catalysts for alkane hydroxylation. Coord Chem Rev 200–202:517–544CrossRef Costas M, Chen K, Que L Jr (2000) Biomimetic nonheme iron catalysts for alkane hydroxylation. Coord Chem Rev 200–202:517–544CrossRef
71.
go back to reference Piera J, Bäckvall J-E (2008) Catalytic oxidation of organic substrates by molecular oxygen and hydrogen peroxide by multistep electron transfer – a biomimetic approach. Angew Chem Int Ed 47:3506–3523CrossRef Piera J, Bäckvall J-E (2008) Catalytic oxidation of organic substrates by molecular oxygen and hydrogen peroxide by multistep electron transfer – a biomimetic approach. Angew Chem Int Ed 47:3506–3523CrossRef
72.
go back to reference Meunier B, de Visser SP, Shaik S (2004) Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem Rev 104:3947–3980CrossRef Meunier B, de Visser SP, Shaik S (2004) Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem Rev 104:3947–3980CrossRef
73.
go back to reference McLain JL, Lee J, Groves JT (2000) Biomimetic oxygenations related to cytochrome P450: metal-oxo and metal-peroxo intermediates. In: Meunier B (ed) Biomimetic oxidations catalyzed by transition metal complexes. Imperial College Press, London, pp 91–169CrossRef McLain JL, Lee J, Groves JT (2000) Biomimetic oxygenations related to cytochrome P450: metal-oxo and metal-peroxo intermediates. In: Meunier B (ed) Biomimetic oxidations catalyzed by transition metal complexes. Imperial College Press, London, pp 91–169CrossRef
74.
go back to reference Groves JT, Nemo TE, Myers RS (1979) Hydroxylation and epoxidation catalyzed by iron-porphine complexes. oxygen transfer from iodosylbenzene. J Am Chem Soc 101:1032–1033CrossRef Groves JT, Nemo TE, Myers RS (1979) Hydroxylation and epoxidation catalyzed by iron-porphine complexes. oxygen transfer from iodosylbenzene. J Am Chem Soc 101:1032–1033CrossRef
75.
go back to reference Leroy J, Bondon A (2007) β-Fluorinated porphyrins and related compounds: an overview. Eur J Org Chem 2008:417–433CrossRef Leroy J, Bondon A (2007) β-Fluorinated porphyrins and related compounds: an overview. Eur J Org Chem 2008:417–433CrossRef
76.
go back to reference Cai Y, Liu Y, Lu Y, Gao G, He M (2008) Ionic manganese porphyrins with S-containing counter anions: mimicking cytochrome P450 activity for alkene epoxidation. Catal Lett 124:334–339CrossRef Cai Y, Liu Y, Lu Y, Gao G, He M (2008) Ionic manganese porphyrins with S-containing counter anions: mimicking cytochrome P450 activity for alkene epoxidation. Catal Lett 124:334–339CrossRef
77.
go back to reference Nagarajan S, Nagarajan R, Bruno F, Samuelson LA, Kumar J (2009) A stable biomimetic redox catalyst obtained by the enzyme catalyzed amidation of iron porphyrin. Green Chem 11:334–338CrossRef Nagarajan S, Nagarajan R, Bruno F, Samuelson LA, Kumar J (2009) A stable biomimetic redox catalyst obtained by the enzyme catalyzed amidation of iron porphyrin. Green Chem 11:334–338CrossRef
78.
go back to reference Liu Y, Zhang H-J, Lu Y, Cai Y-Q, Liu X-L (2007) Mild oxidation of styrene and its derivatives catalyzed by ionic manganese porphyrin embedded in a similar structured ionic liquid. Green Chem 9:1114–1119CrossRef Liu Y, Zhang H-J, Lu Y, Cai Y-Q, Liu X-L (2007) Mild oxidation of styrene and its derivatives catalyzed by ionic manganese porphyrin embedded in a similar structured ionic liquid. Green Chem 9:1114–1119CrossRef
79.
go back to reference Lente G, Espenson JH (2005) Oxidation of 2, 4, 6-trichlorophenol by hydrogen peroxide Comparison of different iron-based catalysts. Green Chem 7:28–34CrossRef Lente G, Espenson JH (2005) Oxidation of 2, 4, 6-trichlorophenol by hydrogen peroxide Comparison of different iron-based catalysts. Green Chem 7:28–34CrossRef
80.
go back to reference Stahl SS (2004) Palladium oxidase catalysis: selective oxidation of organic chemicals by direct dioxygen-coupled turnover. Angew Chem Int Ed 43:3400–3420CrossRef Stahl SS (2004) Palladium oxidase catalysis: selective oxidation of organic chemicals by direct dioxygen-coupled turnover. Angew Chem Int Ed 43:3400–3420CrossRef
81.
go back to reference Allardyce CS, Dyson PJ (2001) Ruthenium in medicine: current clinical uses and future prospects. Platinum Met Rev 45:62–69 Allardyce CS, Dyson PJ (2001) Ruthenium in medicine: current clinical uses and future prospects. Platinum Met Rev 45:62–69
82.
go back to reference Pope MT, Muller A (2002) Polyoxometalate chemistry from topology via self assembly to applications. Kluwer, New YorkCrossRef Pope MT, Muller A (2002) Polyoxometalate chemistry from topology via self assembly to applications. Kluwer, New YorkCrossRef
83.
go back to reference Jeannin YP (1998) The nomenclature of polyoxometalates: how to connect a name and a structure. Chem Rev 98:51–76CrossRef Jeannin YP (1998) The nomenclature of polyoxometalates: how to connect a name and a structure. Chem Rev 98:51–76CrossRef
84.
go back to reference Hill CL, Delannoy L, Duncan DC, Weinstock IA, Renneke RF, Reiner RS, Atalla RH, Han JW, Hillesheim DA, Cao R, Anderson TM, Okun NM, Musaev DG, Geletii YV (2007) Complex catalysts from self-repairing ensembles to highly reactive air-based oxidation systems. Comptes rendus Chim 10:305–312CrossRef Hill CL, Delannoy L, Duncan DC, Weinstock IA, Renneke RF, Reiner RS, Atalla RH, Han JW, Hillesheim DA, Cao R, Anderson TM, Okun NM, Musaev DG, Geletii YV (2007) Complex catalysts from self-repairing ensembles to highly reactive air-based oxidation systems. Comptes rendus Chim 10:305–312CrossRef
85.
go back to reference Kozhevnikov IV (1998) Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem Rev 98:171–198CrossRef Kozhevnikov IV (1998) Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem Rev 98:171–198CrossRef
86.
go back to reference Long D-L, Burkholder E, Cronin L (2007) Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. Chem Soc Rev 36:105–121CrossRef Long D-L, Burkholder E, Cronin L (2007) Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. Chem Soc Rev 36:105–121CrossRef
87.
go back to reference Trubitsyna T, Kholdeeva O (2008) Kinetics and mechanism of the oxidation of 2, 3, 6-trimethylphenol with hydrogen peroxide in the presence of Ti-monosubstituted polyoxometalates. Kinet Catal 49:371–378CrossRef Trubitsyna T, Kholdeeva O (2008) Kinetics and mechanism of the oxidation of 2, 3, 6-trimethylphenol with hydrogen peroxide in the presence of Ti-monosubstituted polyoxometalates. Kinet Catal 49:371–378CrossRef
88.
go back to reference Neumann R (2010) Activation of molecular oxygen, polyoxometalates, and liquid-phase catalytic oxidation. Inorg Chem 49:3594–3601CrossRef Neumann R (2010) Activation of molecular oxygen, polyoxometalates, and liquid-phase catalytic oxidation. Inorg Chem 49:3594–3601CrossRef
89.
go back to reference Maayan G, Ganchegui B, Leitner W, Neumann R (2006) Selective aerobic oxidation in supercritical carbon dioxide catalyzed by the H5PV2Mo10O40 polyoxometalate. Chem Commun 21:2230–2232CrossRef Maayan G, Ganchegui B, Leitner W, Neumann R (2006) Selective aerobic oxidation in supercritical carbon dioxide catalyzed by the H5PV2Mo10O40 polyoxometalate. Chem Commun 21:2230–2232CrossRef
90.
go back to reference Vazylyev M, Sloboda-Rozner D, Haimov A, Maayan G, Neumann R (2005) Strategies for oxidation catalyzed by polyoxometalates at the interface of homogeneous and heterogeneous catalysis. Top Catal 34:93–99CrossRef Vazylyev M, Sloboda-Rozner D, Haimov A, Maayan G, Neumann R (2005) Strategies for oxidation catalyzed by polyoxometalates at the interface of homogeneous and heterogeneous catalysis. Top Catal 34:93–99CrossRef
91.
go back to reference Clark JH, Tavener SJ (2007) Alternative solvents: shades of green. Org Proc Res Dev 11:149–155CrossRef Clark JH, Tavener SJ (2007) Alternative solvents: shades of green. Org Proc Res Dev 11:149–155CrossRef
92.
go back to reference Collins TJ (2001) Papermaking: green chemistry through the mill. Nature 414:161–162CrossRef Collins TJ (2001) Papermaking: green chemistry through the mill. Nature 414:161–162CrossRef
93.
go back to reference Weiner H, Finke RG (1999) An all-inorganic, polyoxometalate-based catechol dioxygenase that exhibits >100 000 catalytic turnovers. J Am Chem Soc 121:9831–9842CrossRef Weiner H, Finke RG (1999) An all-inorganic, polyoxometalate-based catechol dioxygenase that exhibits >100 000 catalytic turnovers. J Am Chem Soc 121:9831–9842CrossRef
94.
go back to reference Curzons AD, Constable DJ, Mortimer DN, Cunningham VL (2001) So you think your process is green, how do you know? Using principles of sustainability to determine what is green – a corporate perspective. Green Chem 3:1–6CrossRef Curzons AD, Constable DJ, Mortimer DN, Cunningham VL (2001) So you think your process is green, how do you know? Using principles of sustainability to determine what is green – a corporate perspective. Green Chem 3:1–6CrossRef
95.
go back to reference Höft E (1993) Enantioselective epoxidation with peroxidic oxygen. Top Curr Chem 164:63–77CrossRef Höft E (1993) Enantioselective epoxidation with peroxidic oxygen. Top Curr Chem 164:63–77CrossRef
96.
go back to reference Canali L, Karjalainen JK, Sherrington DC, Hormi O (1997) Efficient polymer-supported sharpless alkene epoxidation catalyst. Chem Commun 1997:123–124CrossRef Canali L, Karjalainen JK, Sherrington DC, Hormi O (1997) Efficient polymer-supported sharpless alkene epoxidation catalyst. Chem Commun 1997:123–124CrossRef
97.
go back to reference Zhang W, Loebach JL, Wilson SR, Jacobsen EN (1990) Enantioselective epoxidation of unfunctionalized olefins catalyzed by (Salen)manganese complexes. J Am Chem Soc 112:2801–2803CrossRef Zhang W, Loebach JL, Wilson SR, Jacobsen EN (1990) Enantioselective epoxidation of unfunctionalized olefins catalyzed by (Salen)manganese complexes. J Am Chem Soc 112:2801–2803CrossRef
98.
go back to reference Irie R, Noda K, Ito Y, Matsumoto N, Katsuki T (1990) Catalytic asymmetric epoxidation of unfunctionalized olefins. Tetrahedron Lett 31:7345–7348CrossRef Irie R, Noda K, Ito Y, Matsumoto N, Katsuki T (1990) Catalytic asymmetric epoxidation of unfunctionalized olefins. Tetrahedron Lett 31:7345–7348CrossRef
99.
go back to reference Katsuki T (1995) Catalytic asymmetric oxidations using optically-active (salen)manganese(III) complexes as catalysts. Coord Chem Rev 140:189–214CrossRef Katsuki T (1995) Catalytic asymmetric oxidations using optically-active (salen)manganese(III) complexes as catalysts. Coord Chem Rev 140:189–214CrossRef
100.
go back to reference Srinivasan K, Michaud P, Kochi JK (1986) Epoxidation of olefins with cationic (salen)MnIII complexes. The modulation of catalytic activity by substituents. J Am Chem Soc 108:2309–2320CrossRef Srinivasan K, Michaud P, Kochi JK (1986) Epoxidation of olefins with cationic (salen)MnIII complexes. The modulation of catalytic activity by substituents. J Am Chem Soc 108:2309–2320CrossRef
101.
go back to reference Groves JT, Myers RS (1983) Catalytic asymmetric epoxidations with chiral iron porphyrins. J Am Chem Soc 105:5791–5796CrossRef Groves JT, Myers RS (1983) Catalytic asymmetric epoxidations with chiral iron porphyrins. J Am Chem Soc 105:5791–5796CrossRef
102.
go back to reference Limburg J, Brudvig GW, Crabtree RH (2000) Modeling the oxygen-evolving complex in photosystem II. In: Meunier B (ed) Biomimetic oxidations catalyzed by transition metal complexes. Imperial College Press, London, pp 509–541CrossRef Limburg J, Brudvig GW, Crabtree RH (2000) Modeling the oxygen-evolving complex in photosystem II. In: Meunier B (ed) Biomimetic oxidations catalyzed by transition metal complexes. Imperial College Press, London, pp 509–541CrossRef
103.
go back to reference Zou X, Fu X, Li Y, Tu X, Fu S, Luo Y, Wu X (2010) Highly enantioselective epoxidation of unfunctionalized olefins catalyzed by chiral Jacobsen's catalyst immobilized on phenoxy-modified zirconium poly(styrene-phenylvinylphosphonate)phosphate. Adv Synth Catal 352:163–170CrossRef Zou X, Fu X, Li Y, Tu X, Fu S, Luo Y, Wu X (2010) Highly enantioselective epoxidation of unfunctionalized olefins catalyzed by chiral Jacobsen's catalyst immobilized on phenoxy-modified zirconium poly(styrene-phenylvinylphosphonate)phosphate. Adv Synth Catal 352:163–170CrossRef
104.
go back to reference Das P, Silva AR, Carvalho AP, Pires J, Freire C (2009) Enantioselective epoxidation of alkenes by Jacobsen catalyst anchored onto aminopropyl-functionalised laponite, MCM-41 and FSM-16. Catal Lett 129:367–375CrossRef Das P, Silva AR, Carvalho AP, Pires J, Freire C (2009) Enantioselective epoxidation of alkenes by Jacobsen catalyst anchored onto aminopropyl-functionalised laponite, MCM-41 and FSM-16. Catal Lett 129:367–375CrossRef
105.
go back to reference Fraile JM, García JI, Mayoral JA (2009) Noncovalent immobilization of enantioselective catalysts. Chem Rev 109:360–417CrossRef Fraile JM, García JI, Mayoral JA (2009) Noncovalent immobilization of enantioselective catalysts. Chem Rev 109:360–417CrossRef
106.
go back to reference Grigoropoulou G, Clark JH, Elings JA (2003) Recent developments on the epoxidation of alkenes using hydrogen peroxide as an oxidant. Green Chem 5:1–7CrossRef Grigoropoulou G, Clark JH, Elings JA (2003) Recent developments on the epoxidation of alkenes using hydrogen peroxide as an oxidant. Green Chem 5:1–7CrossRef
107.
go back to reference Bhattacharjee S, Anderson JA (2004) Epoxidation by layered double hydroxide-hosted catalysts. Catalyst synthesis and use in the epoxidation of R-(+)-Limonene and (-)-α-Pinene using molecular oxygen. Catal Lett 95:119–125CrossRef Bhattacharjee S, Anderson JA (2004) Epoxidation by layered double hydroxide-hosted catalysts. Catalyst synthesis and use in the epoxidation of R-(+)-Limonene and (-)-α-Pinene using molecular oxygen. Catal Lett 95:119–125CrossRef
108.
go back to reference Creager SE, Raybuck SA, Murray RW (1986) An efficient electrocatalytic model cytochrome P-450 epoxidation cycle. J Am Chem Soc 108:4225–4227CrossRef Creager SE, Raybuck SA, Murray RW (1986) An efficient electrocatalytic model cytochrome P-450 epoxidation cycle. J Am Chem Soc 108:4225–4227CrossRef
109.
go back to reference Horwitz CP, Creager SE, Murray RW (1990) Electrocatalytic olefin epoxidation using manganese Schiff-base complexes and dioxygen. Inorg Chem 29:1006–1011CrossRef Horwitz CP, Creager SE, Murray RW (1990) Electrocatalytic olefin epoxidation using manganese Schiff-base complexes and dioxygen. Inorg Chem 29:1006–1011CrossRef
110.
go back to reference Guo P, Wong K-Y (1999) Enantioselective electrocatalytic epoxidation of olefins by chiral manganese Schiff-base complexes. Electrochem Commun 1:559–563CrossRef Guo P, Wong K-Y (1999) Enantioselective electrocatalytic epoxidation of olefins by chiral manganese Schiff-base complexes. Electrochem Commun 1:559–563CrossRef
111.
go back to reference Fatibello-Filho O, Dockal ER, Marcolino-Junior LH, Teixeira MFS (2007) Electrochemical modified electrodes based on metal-salen complexes. Anal Lett 40:1825–1852CrossRef Fatibello-Filho O, Dockal ER, Marcolino-Junior LH, Teixeira MFS (2007) Electrochemical modified electrodes based on metal-salen complexes. Anal Lett 40:1825–1852CrossRef
112.
113.
go back to reference MacMillan DWC (2008) The advent and development of organocatalysis. Nature 455:304–308CrossRef MacMillan DWC (2008) The advent and development of organocatalysis. Nature 455:304–308CrossRef
114.
go back to reference Dondoni A, Massi A (2008) Asymmetric organocatalysis: from infancy to adolescence. Angew Chem Int Ed 47:4638–4661CrossRef Dondoni A, Massi A (2008) Asymmetric organocatalysis: from infancy to adolescence. Angew Chem Int Ed 47:4638–4661CrossRef
115.
go back to reference Wong OA, Shi Y (2008) Organocatalytic oxidation. Asymmetric epoxidation of olefins catalyzed by chiral ketones and iminium salts. Chem Rev 108:3958–3987CrossRef Wong OA, Shi Y (2008) Organocatalytic oxidation. Asymmetric epoxidation of olefins catalyzed by chiral ketones and iminium salts. Chem Rev 108:3958–3987CrossRef
116.
go back to reference Tu Y, Wang Z-X, Shi Y (1996) An efficient asymmetric epoxidation method for trans-olefins mediated by a fructose-derived ketone. J Am Chem Soc 118:9806–9807CrossRef Tu Y, Wang Z-X, Shi Y (1996) An efficient asymmetric epoxidation method for trans-olefins mediated by a fructose-derived ketone. J Am Chem Soc 118:9806–9807CrossRef
117.
go back to reference Shu L, Shi Y (1999) Asymmetric epoxidation using hydrogen peroxide (H2O2) as primary oxidant. Tetrahedron Lett 40:8721–8724CrossRef Shu L, Shi Y (1999) Asymmetric epoxidation using hydrogen peroxide (H2O2) as primary oxidant. Tetrahedron Lett 40:8721–8724CrossRef
118.
go back to reference Sheldon RA, Arends IWCE (2004) Organocatalytic oxidations mediated by nitroxyl radicals. Adv Synth Catal 346:1051–1071CrossRef Sheldon RA, Arends IWCE (2004) Organocatalytic oxidations mediated by nitroxyl radicals. Adv Synth Catal 346:1051–1071CrossRef
119.
go back to reference Bowman DF, Gillan T, Ingold KU (1971) Kinetic applications of electron paramagnetic resonance spectroscopy. III. Self-reactions of dialkyl nitroxide radicals. J Am Chem Soc 93:6555–6561CrossRef Bowman DF, Gillan T, Ingold KU (1971) Kinetic applications of electron paramagnetic resonance spectroscopy. III. Self-reactions of dialkyl nitroxide radicals. J Am Chem Soc 93:6555–6561CrossRef
120.
go back to reference Phukan P, Khisti RS, Sudalai A (2006) Green protocol for the synthesis of N-oxides from secondary amines using vanadium silicate molecular sieve catalyst. J Mol Catal A Chem 248:109–112CrossRef Phukan P, Khisti RS, Sudalai A (2006) Green protocol for the synthesis of N-oxides from secondary amines using vanadium silicate molecular sieve catalyst. J Mol Catal A Chem 248:109–112CrossRef
121.
go back to reference Ciriminna R, Pagliaro M (2010) Industrial oxidations with organocatalyst TEMPO and its derivatives. Org Proc Res Dev 14:245–251CrossRef Ciriminna R, Pagliaro M (2010) Industrial oxidations with organocatalyst TEMPO and its derivatives. Org Proc Res Dev 14:245–251CrossRef
122.
go back to reference Carson R (1962) Silent spring. Houghton Mifflin, Boston Carson R (1962) Silent spring. Houghton Mifflin, Boston
123.
go back to reference Blackmond DG, Armstrong A, Coombe V, Wells A (2007) Water in organocatalytic processes: debunking the myths. Angew Chem Int Ed 46:3798–3800CrossRef Blackmond DG, Armstrong A, Coombe V, Wells A (2007) Water in organocatalytic processes: debunking the myths. Angew Chem Int Ed 46:3798–3800CrossRef
124.
go back to reference Mantzavinos D, Psillakis E (2004) Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment. J Chem Tech Biotech 79:431–454CrossRef Mantzavinos D, Psillakis E (2004) Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment. J Chem Tech Biotech 79:431–454CrossRef
125.
126.
go back to reference Richter HW, Waddell WH (1983) Mechanism of the oxidation of dopamine by the hydroxyl radical in aqueous solution. J Am Chem Soc 105:5434–5440CrossRef Richter HW, Waddell WH (1983) Mechanism of the oxidation of dopamine by the hydroxyl radical in aqueous solution. J Am Chem Soc 105:5434–5440CrossRef
127.
go back to reference Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J chem Soc Trans 65:899–910CrossRef Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J chem Soc Trans 65:899–910CrossRef
128.
go back to reference Masarwa A, Rachmilovich-Calis S, Meyerstein N, Meyerstein D (2005) Oxidation of organic substrates in aerated aqueous solutions by the fenton reagent. Coord Chem Rev 249:1937–1943CrossRef Masarwa A, Rachmilovich-Calis S, Meyerstein N, Meyerstein D (2005) Oxidation of organic substrates in aerated aqueous solutions by the fenton reagent. Coord Chem Rev 249:1937–1943CrossRef
129.
go back to reference Watts RJ, Teel AL (2005) Chemistry of modified fenton's reagent (catalyzed H2O2 propagations-CHP) for in situ soil and groundwater remediation. J Enviro Eng 131:612–622CrossRef Watts RJ, Teel AL (2005) Chemistry of modified fenton's reagent (catalyzed H2O2 propagations-CHP) for in situ soil and groundwater remediation. J Enviro Eng 131:612–622CrossRef
130.
go back to reference Millioli VS, Freire DDC, Cammarota MC (2002) Testing the efficiency of Fenton's reagent in treatment of petroleum-contaminated sand. Engenharia Térmica, Edição Especial 44–47 Millioli VS, Freire DDC, Cammarota MC (2002) Testing the efficiency of Fenton's reagent in treatment of petroleum-contaminated sand. Engenharia Térmica, Edição Especial 44–47
131.
go back to reference Nadtochenko V, Kiwi J (1998) Photoinduced mineralization of xylidine by the Fenton reagent. 2. Implications of the precursors formed in the dark. Environ Sci Technol 32:3282–3285CrossRef Nadtochenko V, Kiwi J (1998) Photoinduced mineralization of xylidine by the Fenton reagent. 2. Implications of the precursors formed in the dark. Environ Sci Technol 32:3282–3285CrossRef
132.
go back to reference Yu R-F, Chen H-W, Liu K-Y, Cheng W-P, Hsieh P-H (2010) Control of the fenton process for textile wastewater treatment using artificial neural networks. J Chem Technol Biotechnol 85:267–278 Yu R-F, Chen H-W, Liu K-Y, Cheng W-P, Hsieh P-H (2010) Control of the fenton process for textile wastewater treatment using artificial neural networks. J Chem Technol Biotechnol 85:267–278
133.
go back to reference Sun Y, Pignatello JJ (1992) Chemical treatment of pesticide wastes. Evaluation of Fe(III) chelates for catalytic hydrogen peroxide oxidation of 2, 4-D at circumeutral pH. J Agric Food Chem 40:322–327CrossRef Sun Y, Pignatello JJ (1992) Chemical treatment of pesticide wastes. Evaluation of Fe(III) chelates for catalytic hydrogen peroxide oxidation of 2, 4-D at circumeutral pH. J Agric Food Chem 40:322–327CrossRef
134.
go back to reference Sun Y, Pignatello JJ (1993) Activation of hydrogen peroxide by iron(III) chelates for abiotic degradation of herbicides and insecticides in water. J Agric Food Chem 41:308–312CrossRef Sun Y, Pignatello JJ (1993) Activation of hydrogen peroxide by iron(III) chelates for abiotic degradation of herbicides and insecticides in water. J Agric Food Chem 41:308–312CrossRef
135.
go back to reference Lewis S, Lynch A, Bachas L, Hampson S, Ormsbee L, Bhattacharyya D (2009) Chelate-modified fenton reaction for the degradation of trichloroethylene in aqueous and two-phase systems. Enviro Eng Sci 26:849–859CrossRef Lewis S, Lynch A, Bachas L, Hampson S, Ormsbee L, Bhattacharyya D (2009) Chelate-modified fenton reaction for the degradation of trichloroethylene in aqueous and two-phase systems. Enviro Eng Sci 26:849–859CrossRef
136.
go back to reference Cybulski A (2007) Catalytic wet air oxidation: are monolithic catalysts and reactors feasible? Ind Engr Chem Res 46:4007–4033CrossRef Cybulski A (2007) Catalytic wet air oxidation: are monolithic catalysts and reactors feasible? Ind Engr Chem Res 46:4007–4033CrossRef
137.
go back to reference Collins TJ, Gordon-Wylie SW, Bartos MJ, Horwitz CP, Woomer CG, Williams SA, Patterson RE, Vuocolo LD, Paterno SA, Strazisar SA, Peraino DK and Dudash CA (1998) The design of green oxidants. In: Anastas P, Warner JC (eds) Greem Chemistry, pp. 46–71 Collins TJ, Gordon-Wylie SW, Bartos MJ, Horwitz CP, Woomer CG, Williams SA, Patterson RE, Vuocolo LD, Paterno SA, Strazisar SA, Peraino DK and Dudash CA (1998) The design of green oxidants. In: Anastas P, Warner JC (eds) Greem Chemistry, pp. 46–71
138.
go back to reference Ellis WC, Tran CT, Denardo MA, Fischer A, Ryabov AD, Collins TJ (2009) Design of more powerful iron-TAML peroxidase enzyme mimics. J Am Chem Soc 131:18052–18053CrossRef Ellis WC, Tran CT, Denardo MA, Fischer A, Ryabov AD, Collins TJ (2009) Design of more powerful iron-TAML peroxidase enzyme mimics. J Am Chem Soc 131:18052–18053CrossRef
139.
go back to reference Collins TJ, Khetan SK, Ryabov AD (2009) Chemistry and applications of iron-TAML catalysts in green oxidation processes based on hydrogen peroxide. In: Anastas PT, Crabtree R (eds) Handbook of green chemistry, vol 1. Wiley, Weinheim, pp 39–77 Collins TJ, Khetan SK, Ryabov AD (2009) Chemistry and applications of iron-TAML catalysts in green oxidation processes based on hydrogen peroxide. In: Anastas PT, Crabtree R (eds) Handbook of green chemistry, vol 1. Wiley, Weinheim, pp 39–77
140.
go back to reference Ryabov AD, Collins TJ (2009) Mechanistic considerations on the reactivity of green FeIII-TAML activators of peroxides. Adv Inorg Chem 61:471–521CrossRef Ryabov AD, Collins TJ (2009) Mechanistic considerations on the reactivity of green FeIII-TAML activators of peroxides. Adv Inorg Chem 61:471–521CrossRef
141.
go back to reference Chanda A, Ryabov AD, Mondal S, Alexandrova L, Ghosh A, Hangun-Balkir Y, Horwitz CP, Collins TJ (2006) Activity-stability parameterization of homogeneous green oxidation catalysts. Chem Euro J 12:9336–9345CrossRef Chanda A, Ryabov AD, Mondal S, Alexandrova L, Ghosh A, Hangun-Balkir Y, Horwitz CP, Collins TJ (2006) Activity-stability parameterization of homogeneous green oxidation catalysts. Chem Euro J 12:9336–9345CrossRef
142.
go back to reference Polshin V, Popescu D-L, Fischer A, Chanda A, Horner DC, Beach ES, Henry J, Qian Y-L, Horwitz CP, Lente G, Fabian I, Muenck E, Bominaar EL, Ryabov AD, Collins TJ (2008) Attaining control by design over the hydrolytic stability of Fe-TAML oxidation catalysts. J Am Chem Soc 130:4497–4506CrossRef Polshin V, Popescu D-L, Fischer A, Chanda A, Horner DC, Beach ES, Henry J, Qian Y-L, Horwitz CP, Lente G, Fabian I, Muenck E, Bominaar EL, Ryabov AD, Collins TJ (2008) Attaining control by design over the hydrolytic stability of Fe-TAML oxidation catalysts. J Am Chem Soc 130:4497–4506CrossRef
143.
go back to reference Georgi A, Schierz A, Trommler U, Horwitz CP, Collins TJ, Kopinke F (2007) Humic acid modified Fenton reagent for enhancement of the working pH range. Appl Catal B Enviro 72:26–36CrossRef Georgi A, Schierz A, Trommler U, Horwitz CP, Collins TJ, Kopinke F (2007) Humic acid modified Fenton reagent for enhancement of the working pH range. Appl Catal B Enviro 72:26–36CrossRef
144.
go back to reference Gupta SS, Stadler M, Noser CA, Ghosh A, Steinhoff B, Lenoir D, Horwitz CP, Schramm K-W, Collins TJ (2002) Rapid total destruction of chlorophenols by activated hydrogen peroxide. Science 296:326–328CrossRef Gupta SS, Stadler M, Noser CA, Ghosh A, Steinhoff B, Lenoir D, Horwitz CP, Schramm K-W, Collins TJ (2002) Rapid total destruction of chlorophenols by activated hydrogen peroxide. Science 296:326–328CrossRef
145.
go back to reference Horwitz CP, Fooksman DR, Vuocolo LD, Gordon-Wylie SW, Cox NJ, Collins TJ (1998) Ligand design approach for securing robust oxidation catalysts. J Am Chem Soc 120:4867–4868CrossRef Horwitz CP, Fooksman DR, Vuocolo LD, Gordon-Wylie SW, Cox NJ, Collins TJ (1998) Ligand design approach for securing robust oxidation catalysts. J Am Chem Soc 120:4867–4868CrossRef
146.
go back to reference Chahbane N, Popescu D-L, Mitchell DA, Chanda A, Lenoir D, Ryabov AD, Schramm K-W, Collins TJ (2007) FeIII-TAML-catalyzed green oxidative degradation of the azo dye Orange II by H2O2 and organic peroxides: products, toxicity, kinetics, and mechanisms. Green Chem 9:49–57CrossRef Chahbane N, Popescu D-L, Mitchell DA, Chanda A, Lenoir D, Ryabov AD, Schramm K-W, Collins TJ (2007) FeIII-TAML-catalyzed green oxidative degradation of the azo dye Orange II by H2O2 and organic peroxides: products, toxicity, kinetics, and mechanisms. Green Chem 9:49–57CrossRef
147.
go back to reference Horwitz CP, Collins TJ, Spatz J, Smith HJ, Wright LJ, Stuthridge TR, Wingate KG, McGrouther K (2006) Iron-TAML catalysts in the pulp and paper industry. ACS Symp Ser 921:156–169CrossRef Horwitz CP, Collins TJ, Spatz J, Smith HJ, Wright LJ, Stuthridge TR, Wingate KG, McGrouther K (2006) Iron-TAML catalysts in the pulp and paper industry. ACS Symp Ser 921:156–169CrossRef
148.
go back to reference Chanda A, Khetan SK, Banerjee D, Ghosh A, Collins TJ (2006) Total degradation of fenitrothion and other organophosphorus pesticides by catalytic oxidation employing Fe-TAML peroxide activators. J Am Chem Soc 128:12058–12059CrossRef Chanda A, Khetan SK, Banerjee D, Ghosh A, Collins TJ (2006) Total degradation of fenitrothion and other organophosphorus pesticides by catalytic oxidation employing Fe-TAML peroxide activators. J Am Chem Soc 128:12058–12059CrossRef
149.
go back to reference Banerjee D, Markley AL, Yano T, Ghosh A, Berget PB, Minkley E Jr, Khetan SK, Collins TJ (2006) “Green” oxidation catalysis for rapid deactivation of bacterial spores. Angew Chem Int Ed 45:3974–3977CrossRef Banerjee D, Markley AL, Yano T, Ghosh A, Berget PB, Minkley E Jr, Khetan SK, Collins TJ (2006) “Green” oxidation catalysis for rapid deactivation of bacterial spores. Angew Chem Int Ed 45:3974–3977CrossRef
150.
go back to reference Shappell NW, Vrabel MA, Madsen PJ, Harrington G, Billey LO, Hakk H, Larson GL, Beach E, Horwitz CP, Ro K, Hunt PG, Collins TJ (2008) Destruction of estrogens using Fe-TAML/peroxide catalysis. Environ Sci Technol 42:1296–1300CrossRef Shappell NW, Vrabel MA, Madsen PJ, Harrington G, Billey LO, Hakk H, Larson GL, Beach E, Horwitz CP, Ro K, Hunt PG, Collins TJ (2008) Destruction of estrogens using Fe-TAML/peroxide catalysis. Environ Sci Technol 42:1296–1300CrossRef
151.
go back to reference Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Nat Acad Sci 103:15729–15735CrossRef Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Nat Acad Sci 103:15729–15735CrossRef
152.
go back to reference Nocera DG (2009) Chemistry of personalized solar energy. Inorg Chem 48:10001–10017CrossRef Nocera DG (2009) Chemistry of personalized solar energy. Inorg Chem 48:10001–10017CrossRef
153.
go back to reference Dismukes GC, van Willigen RT (2006) Manganese: the oxygen-evolving complex & models. Encyclopedia of Inorganic Chemistry 5:1–15 Dismukes GC, van Willigen RT (2006) Manganese: the oxygen-evolving complex & models. Encyclopedia of Inorganic Chemistry 5:1–15
154.
go back to reference Raymond J, Blankenship RE (2008) The origin of the oxygen-evolving complex. Coord Chem Rev 252:377–383CrossRef Raymond J, Blankenship RE (2008) The origin of the oxygen-evolving complex. Coord Chem Rev 252:377–383CrossRef
155.
go back to reference Dincă M, Surendranath Y, Nocera DG (2010) Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc Nat Acad Sci 107:10337–10341CrossRef Dincă M, Surendranath Y, Nocera DG (2010) Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc Nat Acad Sci 107:10337–10341CrossRef
156.
go back to reference Surendranath Y, Dinca M, Nocera DG (2009) Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J Am Chem Soc 131:2615–2620CrossRef Surendranath Y, Dinca M, Nocera DG (2009) Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J Am Chem Soc 131:2615–2620CrossRef
157.
go back to reference Cross DP, Ramachandran G, Wattenberg EV (2001) Mixtures of nickel and cobalt chlorides induce synergistic cytotoxic effects: implications for inhalation exposure modeling. Ann Occup Hyg 45:409–418 Cross DP, Ramachandran G, Wattenberg EV (2001) Mixtures of nickel and cobalt chlorides induce synergistic cytotoxic effects: implications for inhalation exposure modeling. Ann Occup Hyg 45:409–418
158.
go back to reference Nakagawa T, Beasley CA, Murray RW (2009) Efficient electro-oxidation of water near its reversible potential by a Mesoporous IrOx Nanoparticle Film. J Phys Chem C 113:12958–12961CrossRef Nakagawa T, Beasley CA, Murray RW (2009) Efficient electro-oxidation of water near its reversible potential by a Mesoporous IrOx Nanoparticle Film. J Phys Chem C 113:12958–12961CrossRef
159.
go back to reference Yin Q, Tan JM, Besson C, Geletii YV, Musaev DG, Kuznetsov AE, Luo Z, Hardcastle KI, Hill CL (2010) A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328:342–345CrossRef Yin Q, Tan JM, Besson C, Geletii YV, Musaev DG, Kuznetsov AE, Luo Z, Hardcastle KI, Hill CL (2010) A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328:342–345CrossRef
160.
go back to reference Baer K, Kraußr M, Burda E, Hummel W, Berkessel A, Gröger H (2009) Sequential and modular synthesis of chiral 1, 3-diols with two stereogenic centers: access to all four stereoisomers by combination of organo- and biocatalysis. Angew Chem Int Ed 48:9355–9358CrossRef Baer K, Kraußr M, Burda E, Hummel W, Berkessel A, Gröger H (2009) Sequential and modular synthesis of chiral 1, 3-diols with two stereogenic centers: access to all four stereoisomers by combination of organo- and biocatalysis. Angew Chem Int Ed 48:9355–9358CrossRef
161.
go back to reference Turner NJ (2009) Directed evolution drives the next generation of biocatalysts. Nat Chem Biol 5:567–573CrossRef Turner NJ (2009) Directed evolution drives the next generation of biocatalysts. Nat Chem Biol 5:567–573CrossRef
162.
go back to reference Fogg DE, dos Santos EN (2004) Tandem catalysis: a taxonomy and illustrative review. Coord Chem Rev 248:2365–2379CrossRef Fogg DE, dos Santos EN (2004) Tandem catalysis: a taxonomy and illustrative review. Coord Chem Rev 248:2365–2379CrossRef
163.
go back to reference Nicolaou KC, Chen JS (2009) The art of total synthesis through cascade reactions. Chem Soc Rev 38:2993–3009CrossRef Nicolaou KC, Chen JS (2009) The art of total synthesis through cascade reactions. Chem Soc Rev 38:2993–3009CrossRef
164.
go back to reference Forster PM, Cheetham AK (2003) Hybrid inorganic-organic solids: an emerging class of nanoporous catalysts. Top Catal 24:79–86CrossRef Forster PM, Cheetham AK (2003) Hybrid inorganic-organic solids: an emerging class of nanoporous catalysts. Top Catal 24:79–86CrossRef
165.
go back to reference Kaneda K, Mizugaki T (2009) Development of concerto metal catalysts using apatite compounds for green organic syntheses. Energy Enviro Sci 2:655–673CrossRef Kaneda K, Mizugaki T (2009) Development of concerto metal catalysts using apatite compounds for green organic syntheses. Energy Enviro Sci 2:655–673CrossRef
166.
go back to reference Wight AP, Davis ME (2002) Design and preparation of organic-inorganic hybrid catalysts. Chem Rev 102:3589–3614CrossRef Wight AP, Davis ME (2002) Design and preparation of organic-inorganic hybrid catalysts. Chem Rev 102:3589–3614CrossRef
167.
go back to reference Brunel D, Fajula F, Nagy JB, Deroide B, Verhoef MJ, Veum L, Peters JA, van Bekkum H (2001) Comparison of two MCM-41 grafted TEMPO catalysts in selective alcohol oxidation. Appl Catal A Gen 213:73–82CrossRef Brunel D, Fajula F, Nagy JB, Deroide B, Verhoef MJ, Veum L, Peters JA, van Bekkum H (2001) Comparison of two MCM-41 grafted TEMPO catalysts in selective alcohol oxidation. Appl Catal A Gen 213:73–82CrossRef
168.
go back to reference Capello C, Fischer U, Hungerbühler K (2007) What is a green solvent? a comprehensive framework for the environmental assessment of solvents. Green Chem 9:927–934CrossRef Capello C, Fischer U, Hungerbühler K (2007) What is a green solvent? a comprehensive framework for the environmental assessment of solvents. Green Chem 9:927–934CrossRef
169.
go back to reference Olivier-Bourbigou H, Magna L, Morvan D (2009) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A Gen 373:1–56CrossRef Olivier-Bourbigou H, Magna L, Morvan D (2009) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A Gen 373:1–56CrossRef
170.
go back to reference Deetlefs M, Seddon KR (2010) Assessing the greenness of some typical laboratory ionic liquid preparations. Green Chem 12:17–30CrossRef Deetlefs M, Seddon KR (2010) Assessing the greenness of some typical laboratory ionic liquid preparations. Green Chem 12:17–30CrossRef
171.
go back to reference Zhang W (2009) Green chemistry aspects of fluorous techniques-opportunities and challenges for small-scale organic synthesis. Green Chem 11:911–920CrossRef Zhang W (2009) Green chemistry aspects of fluorous techniques-opportunities and challenges for small-scale organic synthesis. Green Chem 11:911–920CrossRef
172.
go back to reference Akien GR, Poliakoff M (2009) A critical look at reactions in class I and II gas-expanded liquids using CO2 and other gases. Green Chem 11:1083–1100CrossRef Akien GR, Poliakoff M (2009) A critical look at reactions in class I and II gas-expanded liquids using CO2 and other gases. Green Chem 11:1083–1100CrossRef
173.
go back to reference Liu Y, Jessop PG, Cunningham M, Eckert CA, Liotta CL (2006) Switchable surfactants. Science 313:958–960CrossRef Liu Y, Jessop PG, Cunningham M, Eckert CA, Liotta CL (2006) Switchable surfactants. Science 313:958–960CrossRef
174.
go back to reference Chavali S, Lin B, Miller DC, Camarda KV (2004) Environmentally-benign transition metal catalyst design using optimization techniques. Comput Chem Eng 28:605–611CrossRef Chavali S, Lin B, Miller DC, Camarda KV (2004) Environmentally-benign transition metal catalyst design using optimization techniques. Comput Chem Eng 28:605–611CrossRef
175.
go back to reference Guidoni L, Spiegel K, Zumstein M, Röthlisberger U (2004) Green oxidation catalysts: computational design of high-efficiency models of galactose oxidase. Angew Chem Int Ed 43:3286–3289CrossRef Guidoni L, Spiegel K, Zumstein M, Röthlisberger U (2004) Green oxidation catalysts: computational design of high-efficiency models of galactose oxidase. Angew Chem Int Ed 43:3286–3289CrossRef
176.
go back to reference Schüth F, Busch O, Hoffmann C, Johann T, Kiener C, Demuth D, Klein J, Schunk S, Strehlau W, Zech T (2002) High-throughput experimentation in oxidation catalysis. Top Catal 21:55–66CrossRef Schüth F, Busch O, Hoffmann C, Johann T, Kiener C, Demuth D, Klein J, Schunk S, Strehlau W, Zech T (2002) High-throughput experimentation in oxidation catalysis. Top Catal 21:55–66CrossRef
177.
go back to reference Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502CrossRef Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502CrossRef
178.
go back to reference Christensen CH, Rass-Hansen J, Marsden CC, Taarning E, Egeblad K (2008) The renewable chemicals industry. ChemSusChem 1:283–289CrossRef Christensen CH, Rass-Hansen J, Marsden CC, Taarning E, Egeblad K (2008) The renewable chemicals industry. ChemSusChem 1:283–289CrossRef
179.
go back to reference Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554CrossRef Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554CrossRef
180.
go back to reference Scott EL, Sanders JPM, Steinbüchel A (2010) Perspectives on Chemicals from Renewable Resources. In: Sustainable biotechnology, pp 195–210CrossRef Scott EL, Sanders JPM, Steinbüchel A (2010) Perspectives on Chemicals from Renewable Resources. In: Sustainable biotechnology, pp 195–210CrossRef
Metadata
Title
Oxidation Catalysts for Green Chemistry
Author
Colin P. Horwitz
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-5817-3_9