Skip to main content
Top
Published in: Topics in Catalysis 17-18/2016

01-08-2016 | Original Paper

Oxygen Electrocatalysis on Dealloyed Pt Nanocatalysts

Authors: Stefanie Kühl, Peter Strasser

Published in: Topics in Catalysis | Issue 17-18/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We review the fundamental principles, the preparation and catalytic performance of dealloyed Pt core–shell electrocatalysts for the electroreduction of molecular oxygen. This reaction is key to the efficiency of all fuel cell cathodes, as the oxygen electrocatalysis exhibits much larger kinetic overpotentials compared to typical fuel cell anode reactions. We discuss structural surface lattice strain in metal overlayers and show that they serve as models for nanostructured core–shell catalysts. We address preparation pathways with particular emphasis on the dealloying routes. Trends in reactivity of different dealloyed Pt core–shell catalysts are compared with a focus on the dealloyed Pt–Ni alloy system. Size effects are discussed. Practical catalytic performance data in automotive fuel cells and under automotive fuel cell conditions is provided and contrasted to other state-of-art catalyst concepts. This review concludes that dealloyed Pt core–shell cathode catalysts are currently the most attractive commercialization candidate for automotive applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bockris JOM, Khan SUM (1993) Surface electrochemistry—A molecular level approach, Chapter 5, Springer Bockris JOM, Khan SUM (1993) Surface electrochemistry—A molecular level approach, Chapter 5, Springer
2.
go back to reference Voorspools K (2004) Sustainability of the future; rethinking the fundamentals of energy research. Renew Sustain Energy Rev 8:599–608CrossRef Voorspools K (2004) Sustainability of the future; rethinking the fundamentals of energy research. Renew Sustain Energy Rev 8:599–608CrossRef
3.
go back to reference Asif M, Muneer T (2007) Energy supply, its demand and security issues for developed and emerging economies. Renew Sustain Energy Rev 11:1388–1413CrossRef Asif M, Muneer T (2007) Energy supply, its demand and security issues for developed and emerging economies. Renew Sustain Energy Rev 11:1388–1413CrossRef
4.
go back to reference Bockris JOM, Reddy AKN, Gamboa-Aldeco M (1998) Modern electrochemistry 2A: fundamentals of electrodics. Plenum US, New York Bockris JOM, Reddy AKN, Gamboa-Aldeco M (1998) Modern electrochemistry 2A: fundamentals of electrodics. Plenum US, New York
5.
go back to reference Hamann CH, Hamnett A, Vielstich W (1998) Electrochemistry. Wiley Hamann CH, Hamnett A, Vielstich W (1998) Electrochemistry. Wiley
6.
go back to reference Schlögl R (2010) The role of chemistry in the energy challenge. ChemSusChem 3:209–222CrossRef Schlögl R (2010) The role of chemistry in the energy challenge. ChemSusChem 3:209–222CrossRef
7.
go back to reference Wakihara M (2001) Recent developments in lithium ion batteries. Mate Sci Eng R Rep 33:109–134CrossRef Wakihara M (2001) Recent developments in lithium ion batteries. Mate Sci Eng R Rep 33:109–134CrossRef
8.
go back to reference Kim JG et al (2015) A review of lithium and non-lithium based solid state batteries. J Power Sources 282:299–322CrossRef Kim JG et al (2015) A review of lithium and non-lithium based solid state batteries. J Power Sources 282:299–322CrossRef
9.
go back to reference Weber A et al (2011) Redox flow batteries: a review. J Appl Electrochem 41:1137–1164CrossRef Weber A et al (2011) Redox flow batteries: a review. J Appl Electrochem 41:1137–1164CrossRef
10.
go back to reference Alotto P, Guarnieri M, Moro F (2014) Redox flow batteries for the storage of renewable energy: a review. Renew Sustain Energy Rev 29:325–335CrossRef Alotto P, Guarnieri M, Moro F (2014) Redox flow batteries for the storage of renewable energy: a review. Renew Sustain Energy Rev 29:325–335CrossRef
11.
go back to reference Carmo M, Fritz DL, Merge J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38:4901–4934CrossRef Carmo M, Fritz DL, Merge J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38:4901–4934CrossRef
12.
go back to reference Nishimura Y (2003) Hydrogen production by water electrolysis—research, development and application of hydrogen producution. Electrochemistry 71:278–282 Nishimura Y (2003) Hydrogen production by water electrolysis—research, development and application of hydrogen producution. Electrochemistry 71:278–282
13.
go back to reference Rossmeisl J et al (2012) Bifunctional anode catalysts for direct methanol fuel cells. Energy Environ Sci 5:8335–8342CrossRef Rossmeisl J et al (2012) Bifunctional anode catalysts for direct methanol fuel cells. Energy Environ Sci 5:8335–8342CrossRef
14.
go back to reference Strasser P (2008) Combinatorial optimization of ternary Pt alloy catalysts for the electrooxidation of methanol. J Comb Chem 10:216–224CrossRef Strasser P (2008) Combinatorial optimization of ternary Pt alloy catalysts for the electrooxidation of methanol. J Comb Chem 10:216–224CrossRef
15.
go back to reference Erini N et al (2014) Ethanol electro-oxidation on Ternary Platinum–Rhodium–Tin nanocatalysts: insights in the atomic 3D structure of the active catalytic phase. ACS Catal 4:1859–1867CrossRef Erini N et al (2014) Ethanol electro-oxidation on Ternary Platinum–Rhodium–Tin nanocatalysts: insights in the atomic 3D structure of the active catalytic phase. ACS Catal 4:1859–1867CrossRef
16.
go back to reference Loukrakpam R et al (2014) Efficient C–C bond splitting on Pt monolayer and sub-monolayer catalysts during ethanol electro-oxidation: Pt layer strain and morphology effects. Phys Chem Chem Phys 16:18866–18876CrossRef Loukrakpam R et al (2014) Efficient C–C bond splitting on Pt monolayer and sub-monolayer catalysts during ethanol electro-oxidation: Pt layer strain and morphology effects. Phys Chem Chem Phys 16:18866–18876CrossRef
17.
go back to reference Erini N et al (2015) Comparative assessment of synthetic strategies toward active platinum–rhodium–tin electrocatalysts for efficient ethanol electro-oxidation. J Power Sources 294:299–304CrossRef Erini N et al (2015) Comparative assessment of synthetic strategies toward active platinum–rhodium–tin electrocatalysts for efficient ethanol electro-oxidation. J Power Sources 294:299–304CrossRef
18.
go back to reference Erini N et al (2015) Exceptional activity of a Pt–Rh–Ni ternary nanostructured catalyst for the electrochemical oxidation of ethanol. ChemElectroChem 2:903–908CrossRef Erini N et al (2015) Exceptional activity of a Pt–Rh–Ni ternary nanostructured catalyst for the electrochemical oxidation of ethanol. ChemElectroChem 2:903–908CrossRef
19.
go back to reference Vuyyuru KR, Strasser P (2012) Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis. Catal Today 195:144–154CrossRef Vuyyuru KR, Strasser P (2012) Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis. Catal Today 195:144–154CrossRef
20.
go back to reference LeRoy RL (1983) Industrial water electrolysis—present and future. Int J Hydrogen Energy 8:401–417CrossRef LeRoy RL (1983) Industrial water electrolysis—present and future. Int J Hydrogen Energy 8:401–417CrossRef
21.
go back to reference Hoare JP (1968) The electrochemistry of oxygen. Wiley, New York Hoare JP (1968) The electrochemistry of oxygen. Wiley, New York
22.
go back to reference Krischer K, Savinova ER (2008) Fundamentals of electrocatalysis in handbook of heterogeneous catalysis. Wiley, pp 1873–1905 Krischer K, Savinova ER (2008) Fundamentals of electrocatalysis in handbook of heterogeneous catalysis. Wiley, pp 1873–1905
23.
go back to reference Nørskov JK et al (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892CrossRef Nørskov JK et al (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892CrossRef
24.
go back to reference Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51CrossRef Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51CrossRef
25.
go back to reference Stephens IEL, Bondarenko AS, Andersen UG, Rossmeisl J, Chorkendorff I (2012) Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ Sci 5:6744–6762CrossRef Stephens IEL, Bondarenko AS, Andersen UG, Rossmeisl J, Chorkendorff I (2012) Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ Sci 5:6744–6762CrossRef
26.
go back to reference Jiao Y, Zheng Y, Jaroniec MT, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44:2060–2086CrossRef Jiao Y, Zheng Y, Jaroniec MT, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44:2060–2086CrossRef
27.
go back to reference Evans UR (1968) Cathodic reduction of oxygen in fuel cells and corrosion cells. Nature 218:602–603CrossRef Evans UR (1968) Cathodic reduction of oxygen in fuel cells and corrosion cells. Nature 218:602–603CrossRef
28.
go back to reference Bing Y, Liu H, Zhang L, Ghosh D, Zhang J (2010) Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem Soc Rev 39:2184–2202CrossRef Bing Y, Liu H, Zhang L, Ghosh D, Zhang J (2010) Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem Soc Rev 39:2184–2202CrossRef
29.
go back to reference Forgie R, Bugosh G, Neyerlin KC, Liu Z, Strasser P (2010) Bimetallic Ru electrocatalysts for the OER and electrolytic water splitting in acidic media. Electrochem Solid State Lett 13:B36CrossRef Forgie R, Bugosh G, Neyerlin KC, Liu Z, Strasser P (2010) Bimetallic Ru electrocatalysts for the OER and electrolytic water splitting in acidic media. Electrochem Solid State Lett 13:B36CrossRef
30.
go back to reference Mette K et al (2012) Nanostructured manganese oxide supported on carbon nanotubes for electrocatalytic water splitting. ChemCatChem 4:851–862CrossRef Mette K et al (2012) Nanostructured manganese oxide supported on carbon nanotubes for electrocatalytic water splitting. ChemCatChem 4:851–862CrossRef
31.
go back to reference Neyerlin KC, Bugosh G, Forgie R, Liu Z, Strasser P (2009) Combinatorial study of high-surface-area binary and ternary electrocatalysts for the oxygen evolution reaction. J Electrochem Soc 156:B363–B369CrossRef Neyerlin KC, Bugosh G, Forgie R, Liu Z, Strasser P (2009) Combinatorial study of high-surface-area binary and ternary electrocatalysts for the oxygen evolution reaction. J Electrochem Soc 156:B363–B369CrossRef
32.
go back to reference Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, Oxford Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, Oxford
33.
go back to reference Nesselberger M et al (2011) The particle size effect on the oxygen reduction reaction activity of Pt catalysts: influence of electrolyte and relation to single crystal models. J Am Chem Soc 133:17428–17433CrossRef Nesselberger M et al (2011) The particle size effect on the oxygen reduction reaction activity of Pt catalysts: influence of electrolyte and relation to single crystal models. J Am Chem Soc 133:17428–17433CrossRef
34.
go back to reference Shao MH, Peles A, Shoemaker K (2011) Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett 11:3714–3719CrossRef Shao MH, Peles A, Shoemaker K (2011) Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett 11:3714–3719CrossRef
35.
go back to reference Perez-Alonso FJ et al (2012) The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. Angew Chem Int Ed 51:4641–4643CrossRef Perez-Alonso FJ et al (2012) The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. Angew Chem Int Ed 51:4641–4643CrossRef
36.
go back to reference Wang C et al (2009) Monodisperse Pt3Co nanoparticles as a catalyst for the oxygen reduction reaction: size-dependent activity. J Phys Chem C 113:19365–19368CrossRef Wang C et al (2009) Monodisperse Pt3Co nanoparticles as a catalyst for the oxygen reduction reaction: size-dependent activity. J Phys Chem C 113:19365–19368CrossRef
37.
go back to reference Koh S, Strasser P (2007) Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J Am Chem Soc 129:12624–12625CrossRef Koh S, Strasser P (2007) Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J Am Chem Soc 129:12624–12625CrossRef
38.
go back to reference Oezaslan M, Hasché F, Strasser P (2012) Oxygen electroreduction on PtCo3, PtCo and Pt3Co alloy nanoparticles for alkaline and acidic PEM fuel cells. J Electrochem Soc 159:B394–B405CrossRef Oezaslan M, Hasché F, Strasser P (2012) Oxygen electroreduction on PtCo3, PtCo and Pt3Co alloy nanoparticles for alkaline and acidic PEM fuel cells. J Electrochem Soc 159:B394–B405CrossRef
39.
go back to reference Oezaslan M, Hasché F, Strasser P (2012) PtCu3, PtCu and Pt3Cu alloy nanoparticle electrocatalysts for oxygen reduction reaction in alkaline and acidic media. J Electrochem Soc 159:B444–B454CrossRef Oezaslan M, Hasché F, Strasser P (2012) PtCu3, PtCu and Pt3Cu alloy nanoparticle electrocatalysts for oxygen reduction reaction in alkaline and acidic media. J Electrochem Soc 159:B444–B454CrossRef
40.
go back to reference Oezaslan M, Hasché F, Strasser P (2013) Pt-based core–shell catalyst architectures for oxygen fuel cell electrodes. J Phys Chem Lett 4:3273–3291CrossRef Oezaslan M, Hasché F, Strasser P (2013) Pt-based core–shell catalyst architectures for oxygen fuel cell electrodes. J Phys Chem Lett 4:3273–3291CrossRef
41.
go back to reference Heggen M, Oezaslan M, Houben L, Strasser P (2012) Formation and analysis of core–shell fine structures in Pt bimetallic nanoparticle fuel cell electrocatalysts. J Phys Chem C 116:19073–19083CrossRef Heggen M, Oezaslan M, Houben L, Strasser P (2012) Formation and analysis of core–shell fine structures in Pt bimetallic nanoparticle fuel cell electrocatalysts. J Phys Chem C 116:19073–19083CrossRef
42.
go back to reference Gan L, Heggen M, O’Malley R, Theobald B, Strasser P (2013) Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts. Nano Lett 13:1131–1138CrossRef Gan L, Heggen M, O’Malley R, Theobald B, Strasser P (2013) Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts. Nano Lett 13:1131–1138CrossRef
43.
go back to reference Snyder J, McCue I, Livi K, Erlebacher J (2012) Structure/processing/properties relationships in nanoporous nanoparticles as applied to catalysis of the cathodic oxygen reduction reaction. J Am Chem Soc 134:8633–8645CrossRef Snyder J, McCue I, Livi K, Erlebacher J (2012) Structure/processing/properties relationships in nanoporous nanoparticles as applied to catalysis of the cathodic oxygen reduction reaction. J Am Chem Soc 134:8633–8645CrossRef
44.
go back to reference Oezaslan M, Heggen M, Strasser P (2011) Size-dependent morphology of dealloyed bimetallic catalysts: linking the nano to the macro scale. J Am Chem Soc 134:514–524CrossRef Oezaslan M, Heggen M, Strasser P (2011) Size-dependent morphology of dealloyed bimetallic catalysts: linking the nano to the macro scale. J Am Chem Soc 134:514–524CrossRef
45.
go back to reference Oezaslan M, Strasser P (2011) Activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell. J Power Sources 196:5240–5249CrossRef Oezaslan M, Strasser P (2011) Activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell. J Power Sources 196:5240–5249CrossRef
46.
go back to reference Gan L, Cui C, Rudi S, Strasser P (2014) Core–shell and nanoporous particle architectures and their effect on the activity and stability of Pt ORR electrocatalysts. Top Catal 57:236–244CrossRef Gan L, Cui C, Rudi S, Strasser P (2014) Core–shell and nanoporous particle architectures and their effect on the activity and stability of Pt ORR electrocatalysts. Top Catal 57:236–244CrossRef
47.
go back to reference Han BH et al (2015) Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy Environ Sci 8:258–266CrossRef Han BH et al (2015) Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy Environ Sci 8:258–266CrossRef
48.
go back to reference Strasser P et al (2010) Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat Chem 2:454–460CrossRef Strasser P et al (2010) Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat Chem 2:454–460CrossRef
49.
go back to reference Abild-Pedersen F et al (2007) Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 99:016105CrossRef Abild-Pedersen F et al (2007) Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 99:016105CrossRef
50.
go back to reference Wang SG et al (2011) Scaling relations applied to synthetic fuel production. Abstr Pap Am Chem Soc 242 Wang SG et al (2011) Scaling relations applied to synthetic fuel production. Abstr Pap Am Chem Soc 242
51.
go back to reference Hammer B, Nørskov JK (2000) Theoretical surface science and catalysis—calculations and concepts. Adv Catal 45:71–129 Hammer B, Nørskov JK (2000) Theoretical surface science and catalysis—calculations and concepts. Adv Catal 45:71–129
52.
go back to reference Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett 93:156801CrossRef Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett 93:156801CrossRef
53.
go back to reference Yu C, Koh S, Leisch JE, Toney MF, Strasser P (2009) Size and composition distribution dynamics of alloy nanoparticle electrocatalysts probed by anomalous small angle X-ray scattering (ASAXS). Faraday Discuss 140:283–296CrossRef Yu C, Koh S, Leisch JE, Toney MF, Strasser P (2009) Size and composition distribution dynamics of alloy nanoparticle electrocatalysts probed by anomalous small angle X-ray scattering (ASAXS). Faraday Discuss 140:283–296CrossRef
54.
go back to reference Kibler LA, El-Aziz AM, Hoyer R, Kolb DM (2005) Tuning reaction rates by lateral strain in a palladium monolayer. Angew Chem Int Ed 44:2080–2084CrossRef Kibler LA, El-Aziz AM, Hoyer R, Kolb DM (2005) Tuning reaction rates by lateral strain in a palladium monolayer. Angew Chem Int Ed 44:2080–2084CrossRef
55.
go back to reference Zhang J et al (2005) Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction. J Phys Chem B 109:22701–22704CrossRef Zhang J et al (2005) Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction. J Phys Chem B 109:22701–22704CrossRef
56.
go back to reference Zhang J, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44:2132–2135CrossRef Zhang J, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44:2132–2135CrossRef
57.
go back to reference Zhang JL et al (2005) Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J Am Chem Soc 127:12480–12481CrossRef Zhang JL et al (2005) Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J Am Chem Soc 127:12480–12481CrossRef
58.
go back to reference Mavrikakis M, Hammer B, Norskov JK (1998) Effect of strain on the reactivity of metal surfaces. Phys Rev Lett 81:2819–2822CrossRef Mavrikakis M, Hammer B, Norskov JK (1998) Effect of strain on the reactivity of metal surfaces. Phys Rev Lett 81:2819–2822CrossRef
59.
go back to reference Rossmeisl J, Karlberg GS, Jaramillo T, Norskov JK (2009) Steady state oxygen reduction and cyclic voltammetry. Faraday Discuss 140:337–346CrossRef Rossmeisl J, Karlberg GS, Jaramillo T, Norskov JK (2009) Steady state oxygen reduction and cyclic voltammetry. Faraday Discuss 140:337–346CrossRef
60.
go back to reference Gan L, Strasser P (2013) In: Shao M (ed) Electrocatalysis for fuel cells: a non and low platinum approach. Springer, London, pp 533–560CrossRef Gan L, Strasser P (2013) In: Shao M (ed) Electrocatalysis for fuel cells: a non and low platinum approach. Springer, London, pp 533–560CrossRef
61.
go back to reference Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: pt-skin versus Pt-skeleton surfaces. J Am Chem Soc 128:8813–8819CrossRef Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: pt-skin versus Pt-skeleton surfaces. J Am Chem Soc 128:8813–8819CrossRef
62.
go back to reference Stamenkovic VR et al (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247CrossRef Stamenkovic VR et al (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247CrossRef
63.
go back to reference Lee MH, Do JS (2009) Kinetics of oxygen reduction reaction on Co-rich (core)-Pt-rich (shell)/C electrocatalysts. J Power Sources 188:353–358CrossRef Lee MH, Do JS (2009) Kinetics of oxygen reduction reaction on Co-rich (core)-Pt-rich (shell)/C electrocatalysts. J Power Sources 188:353–358CrossRef
64.
go back to reference Wang C et al (2011) Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett 11:919–926CrossRef Wang C et al (2011) Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett 11:919–926CrossRef
65.
go back to reference Brankovic SR, Wang JX, Adžić RR (2001) Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf Sci 474:L173–L179CrossRef Brankovic SR, Wang JX, Adžić RR (2001) Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf Sci 474:L173–L179CrossRef
66.
go back to reference Wang JX et al (2009) Oxygen reduction on well-defined core–shell nanocatalysts: particle size, facet, and Pt shell thickness effects. J Am Chem Soc 131:17298–17302CrossRef Wang JX et al (2009) Oxygen reduction on well-defined core–shell nanocatalysts: particle size, facet, and Pt shell thickness effects. J Am Chem Soc 131:17298–17302CrossRef
67.
go back to reference Koh S, Toney MF, Strasser P (2007) Activity–stability relationships of ordered and disordered alloy phases of Pt3Co electrocatalysts for the oxygen reduction reaction (ORR). Electrochim Acta 52:2765–2774CrossRef Koh S, Toney MF, Strasser P (2007) Activity–stability relationships of ordered and disordered alloy phases of Pt3Co electrocatalysts for the oxygen reduction reaction (ORR). Electrochim Acta 52:2765–2774CrossRef
68.
go back to reference Koh S, Yu C, Mani P, Srivastava R, Strasser P (2007) Activity of ordered and disordered Pt-Co alloy phases for the electroreduction of oxygen in catalysts with multiple coexisting phases. J Power Sources 172:50–56CrossRef Koh S, Yu C, Mani P, Srivastava R, Strasser P (2007) Activity of ordered and disordered Pt-Co alloy phases for the electroreduction of oxygen in catalysts with multiple coexisting phases. J Power Sources 172:50–56CrossRef
69.
go back to reference Liu Z, Koh S, Yu C, Strasser P (2007) Synthesis, de-alloying, and ORR electrocatalysis of PDDA-stabilized Cu-rich Pt alloy nanoparticles. J Electrochem Soc 154:B1192–B1199CrossRef Liu Z, Koh S, Yu C, Strasser P (2007) Synthesis, de-alloying, and ORR electrocatalysis of PDDA-stabilized Cu-rich Pt alloy nanoparticles. J Electrochem Soc 154:B1192–B1199CrossRef
70.
go back to reference Mani P, Srivastava R, Strasser P (2008) Dealloyed Pt-Cu core–shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. J Phys Chem C 112:2770–2778CrossRef Mani P, Srivastava R, Strasser P (2008) Dealloyed Pt-Cu core–shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. J Phys Chem C 112:2770–2778CrossRef
71.
go back to reference Koh S, Strasser P (2010) Dealloyed Pt nanoparticle fuel cell electrocatalysts: stability and aging study of catalyst powders, thin films, and inks. J Electrochem Soc 157:B585–B591CrossRef Koh S, Strasser P (2010) Dealloyed Pt nanoparticle fuel cell electrocatalysts: stability and aging study of catalyst powders, thin films, and inks. J Electrochem Soc 157:B585–B591CrossRef
72.
go back to reference Gan L, Heggen M, Rudi S, Strasser P (2012) Core–shell compositional fine structures of dealloyed PtxNi1-x nanoparticles and their impact on oxygen reduction catalysis. Nano Lett 12:5423–5430CrossRef Gan L, Heggen M, Rudi S, Strasser P (2012) Core–shell compositional fine structures of dealloyed PtxNi1-x nanoparticles and their impact on oxygen reduction catalysis. Nano Lett 12:5423–5430CrossRef
77.
go back to reference Gröger O, Gasteiger HA, Suchsland JP (2015) Review—electromobility: batteries or fuel cells? J Electrochem Soc 162:A2605–A2622CrossRef Gröger O, Gasteiger HA, Suchsland JP (2015) Review—electromobility: batteries or fuel cells? J Electrochem Soc 162:A2605–A2622CrossRef
78.
go back to reference Hasche F, Oezaslan M, Strasser P (2012) Activity, structure and degradation of dealloyed PtNi3 nanoparticle electrocatalyst for the oxygen reduction reaction in PEMFC. J Electrochem Soc 159:B25–B34CrossRef Hasche F, Oezaslan M, Strasser P (2012) Activity, structure and degradation of dealloyed PtNi3 nanoparticle electrocatalyst for the oxygen reduction reaction in PEMFC. J Electrochem Soc 159:B25–B34CrossRef
79.
go back to reference Wu J et al (2012) Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J Am Chem Soc 134:11880–11883CrossRef Wu J et al (2012) Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J Am Chem Soc 134:11880–11883CrossRef
80.
go back to reference Zhang J, Yang H, Fang J, Zou S (2010) Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett 10:638–644CrossRef Zhang J, Yang H, Fang J, Zou S (2010) Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett 10:638–644CrossRef
81.
go back to reference Wu JB, Gross A, Yang H (2011) Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent. Nano Lett 11:798–802CrossRef Wu JB, Gross A, Yang H (2011) Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent. Nano Lett 11:798–802CrossRef
82.
go back to reference Huang X et al (2015) High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science 348:1230–1234CrossRef Huang X et al (2015) High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science 348:1230–1234CrossRef
83.
go back to reference Chen C et al (2014) Highly crystalline multimetallic nanoframes with Three-dimensional electrocatalytic surfaces. Science 343:1339–1343CrossRef Chen C et al (2014) Highly crystalline multimetallic nanoframes with Three-dimensional electrocatalytic surfaces. Science 343:1339–1343CrossRef
84.
go back to reference Wagner FT, Yan SG, Yu PT (2009) Handbook of fuel cells - Fundamentals, technology, application, John Wiley & Sons Ltd, Chichester, p 250 Wagner FT, Yan SG, Yu PT (2009) Handbook of fuel cells - Fundamentals, technology, application, John Wiley & Sons Ltd, Chichester, p 250
85.
go back to reference Koh S, Hahn N, Yu C, Strasser P (2008) Effects of composition and annealing conditions on catalytic activities of dealloyed Pt–Cu nanoparticle electrocatalysts for PEMFC. J Electrochem Soc 155:B1281–B1288CrossRef Koh S, Hahn N, Yu C, Strasser P (2008) Effects of composition and annealing conditions on catalytic activities of dealloyed Pt–Cu nanoparticle electrocatalysts for PEMFC. J Electrochem Soc 155:B1281–B1288CrossRef
86.
go back to reference Debe MK (2012) Nanostructured thin film electrocatalysts for PEM fuel cells—a tutorial on the fundamental characteristics and practical properties of NSTF catalysts. ECS Trans 45:47–68CrossRef Debe MK (2012) Nanostructured thin film electrocatalysts for PEM fuel cells—a tutorial on the fundamental characteristics and practical properties of NSTF catalysts. ECS Trans 45:47–68CrossRef
87.
go back to reference Cui C, Gan L, Heggen M, Rudi S, Strasser P (2013) Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat Mater 12:765–771CrossRef Cui C, Gan L, Heggen M, Rudi S, Strasser P (2013) Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat Mater 12:765–771CrossRef
Metadata
Title
Oxygen Electrocatalysis on Dealloyed Pt Nanocatalysts
Authors
Stefanie Kühl
Peter Strasser
Publication date
01-08-2016
Publisher
Springer US
Published in
Topics in Catalysis / Issue 17-18/2016
Print ISSN: 1022-5528
Electronic ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-016-0682-z

Other articles of this Issue 17-18/2016

Topics in Catalysis 17-18/2016 Go to the issue

Premium Partners