Skip to main content
Top

2017 | OriginalPaper | Chapter

8. Oxygen Permeation at Intermediate–Low Temperatures

Authors : Xuefeng Zhu, Weishen Yang

Published in: Mixed Conducting Ceramic Membranes

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Although the intermediate–low-temperature operation has many advantages in practical applications, the operation temperature of MIEC membranes is limited in the range of 700–1000 °C in literatures, because membranes have low oxygen permeation flux and low permeation stability when the temperature is lower than 700 °C. With the development of preparation techniques of MIEC membranes, the low oxygen permeation flux can be easily solved; however, it is still a challenge to overcome the degradation of oxygen permeation in the intermediate–low temperature range until we published several papers to disclose the degradation mechanism and the stabilization methods recently. Thus, in chapter, an introduction of our achievements is presented on the stabilization of oxygen permeation of MIEC membranes in the intermediate–low temperature range.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rutkowski B, Malzbender J, Beck T, Steinbrech RW, Singheiser L (2010) Creep behaviour of tubular Ba0.5Sr0.5Co0.8Fe0.2O3−δ gas separation membranes. J Eur Ceram Soc 31:493–499CrossRef Rutkowski B, Malzbender J, Beck T, Steinbrech RW, Singheiser L (2010) Creep behaviour of tubular Ba0.5Sr0.5Co0.8Fe0.2O3−δ gas separation membranes. J Eur Ceram Soc 31:493–499CrossRef
2.
go back to reference Anderson LL, Armstrong PA, Broekhuis RR, Carolan MF, Chen J, Hutcheon MD, Lewinsohn CA, Miller CF, Repasky JM, Taylor DM, Woods CM (2016) Advances in ion transport membrane technology for oxygen and syngas production. Solid State Ionics 288:331–337CrossRef Anderson LL, Armstrong PA, Broekhuis RR, Carolan MF, Chen J, Hutcheon MD, Lewinsohn CA, Miller CF, Repasky JM, Taylor DM, Woods CM (2016) Advances in ion transport membrane technology for oxygen and syngas production. Solid State Ionics 288:331–337CrossRef
3.
go back to reference van Veen AC, Rebeilleau M, Farrusseng D, Mirodatos C (2003) Studies on the performance stability of mixed conducting BSCFO membranes in medium temperature oxygen permeation. Chem Commun 9:32–33CrossRef van Veen AC, Rebeilleau M, Farrusseng D, Mirodatos C (2003) Studies on the performance stability of mixed conducting BSCFO membranes in medium temperature oxygen permeation. Chem Commun 9:32–33CrossRef
4.
go back to reference Wang HH, Tablet C, Caro J (2008) Oxygen production at low temperature using dense perovskite hollow fiber membranes. J Membr Sci 322:214–217CrossRef Wang HH, Tablet C, Caro J (2008) Oxygen production at low temperature using dense perovskite hollow fiber membranes. J Membr Sci 322:214–217CrossRef
5.
go back to reference Kruidhof H, Bouwmeester HJM, Doorn RHEV, Burggraaf AJ (1992) Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides. Solid State Ionics 63–65:816–822 Kruidhof H, Bouwmeester HJM, Doorn RHEV, Burggraaf AJ (1992) Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides. Solid State Ionics 63–65:816–822
6.
go back to reference Shao ZP, Yang WS, Cong Y, Dong H, Tong JH, Xiong GX (2000) Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane. J Membr Sci 172:177–188CrossRef Shao ZP, Yang WS, Cong Y, Dong H, Tong JH, Xiong GX (2000) Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane. J Membr Sci 172:177–188CrossRef
7.
go back to reference Baumann S, Serra JM, Lobera MP, Escolástico S, Schulze-Küppers F, Meulenberg WA (2011) Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. J Membr Sci 377:198–205CrossRef Baumann S, Serra JM, Lobera MP, Escolástico S, Schulze-Küppers F, Meulenberg WA (2011) Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. J Membr Sci 377:198–205CrossRef
8.
go back to reference Cao ZW, Zhu XF, Li WP, Xu B, Yang LN, Yang WS (2015) Asymmetric dual-phase membranes prepared via tape-casting and co-lamination for oxygen permeation. Mater Lett 147:88–91CrossRef Cao ZW, Zhu XF, Li WP, Xu B, Yang LN, Yang WS (2015) Asymmetric dual-phase membranes prepared via tape-casting and co-lamination for oxygen permeation. Mater Lett 147:88–91CrossRef
9.
go back to reference Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S, Lin YS, Diniz da Costa JC (2008) Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Membr Sci 320:13–41CrossRef Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S, Lin YS, Diniz da Costa JC (2008) Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Membr Sci 320:13–41CrossRef
10.
go back to reference Watenabe K, Yuasa M, Kida T, Teraoka Y, Yamazoe N, Shimanoe K (2010) High-performance oxygen-permeable membranes with an asymmetric structure using Ba0.95La0.05FeO3−δ perovskite type oxide. Adv Mater 22:2367–2370CrossRef Watenabe K, Yuasa M, Kida T, Teraoka Y, Yamazoe N, Shimanoe K (2010) High-performance oxygen-permeable membranes with an asymmetric structure using Ba0.95La0.05FeO3−δ perovskite type oxide. Adv Mater 22:2367–2370CrossRef
11.
go back to reference Liu Y, Zhu XF, Li MR, Yang WS (2013) Stabilization of low-temperature degradation in mixed ionic and electronic conducting perovskite oxygen permeation membranes. Angew Chem Int Ed 52:3232–3236CrossRef Liu Y, Zhu XF, Li MR, Yang WS (2013) Stabilization of low-temperature degradation in mixed ionic and electronic conducting perovskite oxygen permeation membranes. Angew Chem Int Ed 52:3232–3236CrossRef
12.
go back to reference Liu Y, Zhu XF, Li MR, O’Hayre RP, Yang WS (2015) Nanoparticles at grain boundaries inhibit the phase transformation of perovskite membrane. Nano Lett 15:7678–7683CrossRef Liu Y, Zhu XF, Li MR, O’Hayre RP, Yang WS (2015) Nanoparticles at grain boundaries inhibit the phase transformation of perovskite membrane. Nano Lett 15:7678–7683CrossRef
13.
go back to reference Liu Y, Zhu XF, Li MR, Li WP, Yang WS (2015) Degradation and stabilization of perovskite membranes containing silicon impurity at low temperature. J Membr Sci 492:17–180CrossRef Liu Y, Zhu XF, Li MR, Li WP, Yang WS (2015) Degradation and stabilization of perovskite membranes containing silicon impurity at low temperature. J Membr Sci 492:17–180CrossRef
14.
go back to reference Liu Y, Zhu XF, Li MR, O’Hayre RP, Yang WS (2015) Degradation mechanism analysis of Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes at intermediate-low temperatures. AIChE J 61:3879–3888CrossRef Liu Y, Zhu XF, Li MR, O’Hayre RP, Yang WS (2015) Degradation mechanism analysis of Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes at intermediate-low temperatures. AIChE J 61:3879–3888CrossRef
15.
go back to reference Liu Y, Zhu X, Yang W (2016) Stability of sulfate doped SrCoO3−δ MIEC membrane. J Membr Sci 501:53–59CrossRef Liu Y, Zhu X, Yang W (2016) Stability of sulfate doped SrCoO3−δ MIEC membrane. J Membr Sci 501:53–59CrossRef
16.
go back to reference Deng ZQ, Yang WS, Liu W, Chen CS (2006) Relationship between transport properties and phase transformations in mixed-conducting oxides. J Solid State Chem 179:362–369CrossRef Deng ZQ, Yang WS, Liu W, Chen CS (2006) Relationship between transport properties and phase transformations in mixed-conducting oxides. J Solid State Chem 179:362–369CrossRef
17.
go back to reference Mueller DN, De Souza RA, Weirich TE, Roethrens D, Mayer J, Martin M (2010) A kinetic study of the decomposition of the cubic perovskite-type oxide BaxSr1−xCo0.8Fe0.2O3−δ (BSCF) (x = 0.1 and 0.5). Phys Chem Chem Phys 12:10320–10328CrossRef Mueller DN, De Souza RA, Weirich TE, Roethrens D, Mayer J, Martin M (2010) A kinetic study of the decomposition of the cubic perovskite-type oxide BaxSr1−xCo0.8Fe0.2O3−δ (BSCF) (x = 0.1 and 0.5). Phys Chem Chem Phys 12:10320–10328CrossRef
18.
go back to reference Zhu XF, Wang HH, Yang WS (2006) Structural stability and oxygen permeability of cerium lightly doped BaFeO3−δ ceramic membranes. Solid State Ionics 177:2917–2921CrossRef Zhu XF, Wang HH, Yang WS (2006) Structural stability and oxygen permeability of cerium lightly doped BaFeO3−δ ceramic membranes. Solid State Ionics 177:2917–2921CrossRef
19.
go back to reference Hong JO, Teller O, Martin M, Yoo HI (1999) Demixing of mixed (A, B)O in an oxygen potential gradient: numerical solution the time evolution of the demixing process. Solid State Ionics 123:75–85CrossRef Hong JO, Teller O, Martin M, Yoo HI (1999) Demixing of mixed (A, B)O in an oxygen potential gradient: numerical solution the time evolution of the demixing process. Solid State Ionics 123:75–85CrossRef
20.
go back to reference Tong JH, Yang WS, Zhu BC, Cai R (2002) Investigation of ideal zirconium-doped perovskite-type ceramic membrane materials for oxygen separation. J Membr Sci 203:175–189CrossRef Tong JH, Yang WS, Zhu BC, Cai R (2002) Investigation of ideal zirconium-doped perovskite-type ceramic membrane materials for oxygen separation. J Membr Sci 203:175–189CrossRef
21.
go back to reference Tong JH, Yang WS, Cai R, Zhu BC, Lin LW (2002) Novel and ideal zirconium-based dense membrane reactors for partial oxidation of methane to syngas. Catal Lett 78:129–137CrossRef Tong JH, Yang WS, Cai R, Zhu BC, Lin LW (2002) Novel and ideal zirconium-based dense membrane reactors for partial oxidation of methane to syngas. Catal Lett 78:129–137CrossRef
22.
go back to reference Li QM, Zhu XF, He YF, Yang WS (2010) Oxygen permeability and stability of BaCe0.1Co0.4Fe0.5O3−δ oxygen permeable membrane. Sep Purif Technol 73:38–43CrossRef Li QM, Zhu XF, He YF, Yang WS (2010) Oxygen permeability and stability of BaCe0.1Co0.4Fe0.5O3−δ oxygen permeable membrane. Sep Purif Technol 73:38–43CrossRef
23.
go back to reference Cheng YF, Zhao HL, Teng DQ, Li FS, Lu XG, Ding WZ (2008) Investigation of Ba fully occupied A-site BaCo0.7Fe0.3−xNbxO3−δ perovskite stabilized by low concentration of Nb for oxygen permeation membrane. J Membr Sci 322:484–490CrossRef Cheng YF, Zhao HL, Teng DQ, Li FS, Lu XG, Ding WZ (2008) Investigation of Ba fully occupied A-site BaCo0.7Fe0.3−xNbxO3−δ perovskite stabilized by low concentration of Nb for oxygen permeation membrane. J Membr Sci 322:484–490CrossRef
24.
go back to reference Bucher E, Gspan C, Hofer F, Sitte W (2013) Post-test analysis of silicon poisoning and phase decomposition in the SOFC cathode material La0.58Sr0.4Co0.2Fe0.8O3−δ by transmission electron microscopy. Solid State Ionics 230:7–11CrossRef Bucher E, Gspan C, Hofer F, Sitte W (2013) Post-test analysis of silicon poisoning and phase decomposition in the SOFC cathode material La0.58Sr0.4Co0.2Fe0.8O3−δ by transmission electron microscopy. Solid State Ionics 230:7–11CrossRef
25.
go back to reference Viitanena MM, Welzenis RGv, Brongersma HH, van Berkel FPF (2002) Silica poisoning of oxygen membranes. Solid State Ionics 150:223–228 Viitanena MM, Welzenis RGv, Brongersma HH, van Berkel FPF (2002) Silica poisoning of oxygen membranes. Solid State Ionics 150:223–228
26.
go back to reference Hancock CA, Slade RCT, Varcoe JR, Slater PR (2011) Synthesis, structure and conductivity of sulfate and phosphate doped SrCoO3. J Solid State Chem 184:2972–2977CrossRef Hancock CA, Slade RCT, Varcoe JR, Slater PR (2011) Synthesis, structure and conductivity of sulfate and phosphate doped SrCoO3. J Solid State Chem 184:2972–2977CrossRef
27.
go back to reference Porras-Vazquez JM, Slater PR (2012) Synthesis and characterization of oxyanion-doped cobalt containing perovskites. Fuel Cells 12:1056–1063CrossRef Porras-Vazquez JM, Slater PR (2012) Synthesis and characterization of oxyanion-doped cobalt containing perovskites. Fuel Cells 12:1056–1063CrossRef
28.
go back to reference Hancock CA, Slater PR (2011) Synthesis of silicon doped SrMO3 (M = Mn, Co): stabilization of the cubic perovskite and enhancement in conductivity. Dalton Trans 40:5599–5603CrossRef Hancock CA, Slater PR (2011) Synthesis of silicon doped SrMO3 (M = Mn, Co): stabilization of the cubic perovskite and enhancement in conductivity. Dalton Trans 40:5599–5603CrossRef
29.
go back to reference Porras-Vazquez JM, Slater PR (2012) Synthesis of oxyanion-doped barium strontium cobalt ferrites: stabilization of the cubic perovskite and enhancement in conductivity. J Power Sources 209:180–183CrossRef Porras-Vazquez JM, Slater PR (2012) Synthesis of oxyanion-doped barium strontium cobalt ferrites: stabilization of the cubic perovskite and enhancement in conductivity. J Power Sources 209:180–183CrossRef
30.
go back to reference Li MR, Zhou W, Xu XY, Zhu ZH (2013) SrCo0.85Fe0.1P0.05O3−δ perovskite as a cathode for intermediate-temperature solid oxide fuel cells. J Mater Chem A 1:13632–13639CrossRef Li MR, Zhou W, Xu XY, Zhu ZH (2013) SrCo0.85Fe0.1P0.05O3−δ perovskite as a cathode for intermediate-temperature solid oxide fuel cells. J Mater Chem A 1:13632–13639CrossRef
31.
go back to reference Ishihara T, Honda M, Shibayama T, Minami H, Nishiguchi H, Takita Y (1998) Intermediate temperature solid oxide fuel cells using a new LaGaO3 based oxide ion conductor. J Electrochem Soc 145:3177–3183CrossRef Ishihara T, Honda M, Shibayama T, Minami H, Nishiguchi H, Takita Y (1998) Intermediate temperature solid oxide fuel cells using a new LaGaO3 based oxide ion conductor. J Electrochem Soc 145:3177–3183CrossRef
32.
go back to reference Tu HY, Takeda Y, Imanishi N, Yamamoto O (1999) Ln0.4Sr0.6Co0.8Fe0.2O3−δ (Ln = La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells. Solid State Ionics 117:277–281CrossRef Tu HY, Takeda Y, Imanishi N, Yamamoto O (1999) Ln0.4Sr0.6Co0.8Fe0.2O3−δ (Ln = La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells. Solid State Ionics 117:277–281CrossRef
33.
go back to reference Zhang HZ, Yang WS (2007) High efficient electrocatalysts for oxygen reduction reaction. Chem Commun 41:4215–4217CrossRef Zhang HZ, Yang WS (2007) High efficient electrocatalysts for oxygen reduction reaction. Chem Commun 41:4215–4217CrossRef
34.
go back to reference Zhu XF, Li QM, Cong Y, Yang WS (2011) Unsteady-state permeation and surface exchange of dual-phase membranes. Solid State Ionics 185:27–31CrossRef Zhu XF, Li QM, Cong Y, Yang WS (2011) Unsteady-state permeation and surface exchange of dual-phase membranes. Solid State Ionics 185:27–31CrossRef
35.
go back to reference Efimov K, Xu Q, Feldhoff A (2010) Transmission electron microscopy study of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite decomposition at intermediate temperatures. Chem Mater 22:5866–5875CrossRef Efimov K, Xu Q, Feldhoff A (2010) Transmission electron microscopy study of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite decomposition at intermediate temperatures. Chem Mater 22:5866–5875CrossRef
36.
go back to reference Müller P, Störmer H, Dieterle L, Niedrig C, Ivers-Tiffée E, Gerthsen D (2012) Decomposition pathway of cubic Ba0.5Sr0.5Co0.8Fe0.2O3−δ between 700 °C and 1000 °C analyzed by electron microscopic techniques. Solid State Ionics 206:57–66CrossRef Müller P, Störmer H, Dieterle L, Niedrig C, Ivers-Tiffée E, Gerthsen D (2012) Decomposition pathway of cubic Ba0.5Sr0.5Co0.8Fe0.2O3−δ between 700 °C and 1000 °C analyzed by electron microscopic techniques. Solid State Ionics 206:57–66CrossRef
37.
go back to reference Müller P, StÖrmer H, Meffert M, Dieterle L, Niedrig C, Wagner SF, Ivers-Tiffée E, Gerthsen D (2013) Secondary phase formation in Ba0.5Sr0.5Co0.8Fe0.2O3−δ studied by electron microscopy. Chem Mater 25:564–573CrossRef Müller P, StÖrmer H, Meffert M, Dieterle L, Niedrig C, Wagner SF, Ivers-Tiffée E, Gerthsen D (2013) Secondary phase formation in Ba0.5Sr0.5Co0.8Fe0.2O3−δ studied by electron microscopy. Chem Mater 25:564–573CrossRef
38.
go back to reference Zhu XF, Liu HY, Cong Y, Yang WS (2012) Permeation model and experimental investigation of mixed conducting membranes. AIChE J 58:1744–1754CrossRef Zhu XF, Liu HY, Cong Y, Yang WS (2012) Permeation model and experimental investigation of mixed conducting membranes. AIChE J 58:1744–1754CrossRef
39.
go back to reference Zhu XF, Liu HY, Cong Y, Yang WS (2012) Novel dual-phase membranes for CO2 capture via an oxyfuel route. Chem Commun 48:251–253CrossRef Zhu XF, Liu HY, Cong Y, Yang WS (2012) Novel dual-phase membranes for CO2 capture via an oxyfuel route. Chem Commun 48:251–253CrossRef
40.
go back to reference Liu Y, Zhu Y, Li MR, Zhu XF, Yang WS (2016) Oxygen transport kinetics of MIEC membranes coated with different catalysts. AIChE J 62:2803–2812CrossRef Liu Y, Zhu Y, Li MR, Zhu XF, Yang WS (2016) Oxygen transport kinetics of MIEC membranes coated with different catalysts. AIChE J 62:2803–2812CrossRef
41.
go back to reference Zener C, (quoted by Smith CS) (1948) Grains, phases, and interfaces-an interpretation of microsture. Trans AIME 175:15–51 Zener C, (quoted by Smith CS) (1948) Grains, phases, and interfaces-an interpretation of microsture. Trans AIME 175:15–51
42.
go back to reference Sun B, Suo Z, Yang W (1997) A finite element method for simulating interface motion-1. Migration of phase and grain boundaries. Acta Mater 45:1907–1915CrossRef Sun B, Suo Z, Yang W (1997) A finite element method for simulating interface motion-1. Migration of phase and grain boundaries. Acta Mater 45:1907–1915CrossRef
43.
go back to reference Toda-Caraballo I, Capdevila C, Pimentel G, De Andrés CG (2012) Drag effects on grain growth dynamics. Comput Mater Sci 68:95–106CrossRef Toda-Caraballo I, Capdevila C, Pimentel G, De Andrés CG (2012) Drag effects on grain growth dynamics. Comput Mater Sci 68:95–106CrossRef
Metadata
Title
Oxygen Permeation at Intermediate–Low Temperatures
Authors
Xuefeng Zhu
Weishen Yang
Copyright Year
2017
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-53534-9_8