Skip to main content
Top

2024 | OriginalPaper | Chapter

p-Numerical Semigroups of the Triples of the Sequence \((a^n-b^n)/(a-b)\)

Authors : Takao Komatsu, Ruze Yin

Published in: Mathematical Methods for Engineering Applications

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

For a non-negative integer p, we give explicit formulas for the p-Frobenius number and the p-genus of numerical semigroups of \((\nu _n,\nu _{n+1},\nu _{n+2})\), where \(\nu _n=(a^n-b^n)/(a-b)\) with \(\gcd (a,b)=1\) and \(a>b>1\). Here, the p-numerical semigroup \(S_p\) is the set of integers whose non-negative integral linear combinations of given positive integers are expressed more than p ways. When \(p=0\), \(S_0\) with the 0-Frobenius number and the 0-genus is the original numerical semigroup \(S_0\) with the Frobenius number and the genus. Symmetric properties of numerical semigroups are important to characterize the numerical semigroup. In recent works, some closed formulas of p-Frobenius numbers have been successfully given, but no symmetric property has been found. We give a symmetric property of this numerical semigroup.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Apéry, R.: Sur les branches superlinéaires des courbes algébriques. C. R. Acad. Sci. Paris 222, 1198–1200 (1946)MathSciNet Apéry, R.: Sur les branches superlinéaires des courbes algébriques. C. R. Acad. Sci. Paris 222, 1198–1200 (1946)MathSciNet
2.
go back to reference Bokaew, R., Yuttanan, B., Mavecha, S.: Formulae of the Frobenius number in relatively prime three Lucas numbers. Songklanakarin J. Sci. Technol. 42(5), 1077–1083 (2020) Bokaew, R., Yuttanan, B., Mavecha, S.: Formulae of the Frobenius number in relatively prime three Lucas numbers. Songklanakarin J. Sci. Technol. 42(5), 1077–1083 (2020)
3.
go back to reference Brauer, A., Shockley, B.M.: On a problem of Frobenius. J. Reine. Angew. Math. 211, 215–220 (1962)MathSciNet Brauer, A., Shockley, B.M.: On a problem of Frobenius. J. Reine. Angew. Math. 211, 215–220 (1962)MathSciNet
6.
go back to reference Komatsu, T.: Sylvester power and weighted sums on the Frobenius set in arithmetic progression. Discrete Appl. Math. 315, 110–126 (2022)MathSciNetCrossRef Komatsu, T.: Sylvester power and weighted sums on the Frobenius set in arithmetic progression. Discrete Appl. Math. 315, 110–126 (2022)MathSciNetCrossRef
7.
go back to reference Komatsu, T.: The Frobenius number for sequences of triangular numbers associated with number of solutions. Ann. Comb. 26, 757–779 (2022)MathSciNetCrossRef Komatsu, T.: The Frobenius number for sequences of triangular numbers associated with number of solutions. Ann. Comb. 26, 757–779 (2022)MathSciNetCrossRef
8.
go back to reference Komatsu, T.: On p-Frobenius and related numbers due to p-Apéry set (2022). arXiv:2111.11021v3 Komatsu, T.: On p-Frobenius and related numbers due to p-Apéry set (2022). arXiv:2111.11021v3
13.
14.
go back to reference Komatsu, T., Zhang, Y.: Weighted Sylvester sums on the Frobenius set in more variables. Kyushu J. Math. 76, 163–175 (2022)MathSciNetCrossRef Komatsu, T., Zhang, Y.: Weighted Sylvester sums on the Frobenius set in more variables. Kyushu J. Math. 76, 163–175 (2022)MathSciNetCrossRef
16.
go back to reference Robles-Pérez, A.M., Rosales, J.C.: The Frobenius number for sequences of triangular and tetrahedral numbers. J. Number Theory 186, 473–492 (2018)MathSciNetCrossRef Robles-Pérez, A.M., Rosales, J.C.: The Frobenius number for sequences of triangular and tetrahedral numbers. J. Number Theory 186, 473–492 (2018)MathSciNetCrossRef
17.
go back to reference Rosales, J.C., Garcia-Sanchez, P.A.: Numerical semigroups with embedding dimension three. Arch. Math. (Basel) 83(6), 488–496 (2004) Rosales, J.C., Garcia-Sanchez, P.A.: Numerical semigroups with embedding dimension three. Arch. Math. (Basel) 83(6), 488–496 (2004)
18.
go back to reference Rosales, J.C., Branco, M.B., Torrão, D.: The Frobenius problem for Thabit numerical semigroups. J. Number Theory 155, 85–99 (2015)MathSciNetCrossRef Rosales, J.C., Branco, M.B., Torrão, D.: The Frobenius problem for Thabit numerical semigroups. J. Number Theory 155, 85–99 (2015)MathSciNetCrossRef
19.
go back to reference Rosales, J.C., Branco, M.B., Torrão, D.: The Frobenius problem for repunit numerical semigroups. Ramanujan J. 40, 323–334 (2016)MathSciNetCrossRef Rosales, J.C., Branco, M.B., Torrão, D.: The Frobenius problem for repunit numerical semigroups. Ramanujan J. 40, 323–334 (2016)MathSciNetCrossRef
20.
go back to reference Rosales, J.C., Branco, M.B., Torrão, D.: The Frobenius problem for Mersenne numerical semigroups. Math. Z. 286, 741–749 (2017)MathSciNetCrossRef Rosales, J.C., Branco, M.B., Torrão, D.: The Frobenius problem for Mersenne numerical semigroups. Math. Z. 286, 741–749 (2017)MathSciNetCrossRef
21.
go back to reference Selmer, E.S.: On the linear diophantine problem of Frobenius. J. Reine Angew. Math. 293/294, 1–17 (1977) Selmer, E.S.: On the linear diophantine problem of Frobenius. J. Reine Angew. Math. 293/294, 1–17 (1977)
22.
go back to reference Sylvester, J.J.: On subinvariants, i.e. semi-invariants to binary quantics of an unlimited order. Am. J. Math. 5, 119–136 (1882) Sylvester, J.J.: On subinvariants, i.e. semi-invariants to binary quantics of an unlimited order. Am. J. Math. 5, 119–136 (1882)
23.
go back to reference Sylvester, J.J.: Mathematical questions with their solutions. Educ. Times 41, 21 (1884) Sylvester, J.J.: Mathematical questions with their solutions. Educ. Times 41, 21 (1884)
24.
go back to reference Tripathi, A.: On sums of positive integers that are not of the form \(a x+b y\). Amer. Math. Mon. 115, 363–364 (2008) Tripathi, A.: On sums of positive integers that are not of the form \(a x+b y\). Amer. Math. Mon. 115, 363–364 (2008)
Metadata
Title
p-Numerical Semigroups of the Triples of the Sequence
Authors
Takao Komatsu
Ruze Yin
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-49218-1_2

Premium Partners