Skip to main content
Top

2020 | OriginalPaper | Chapter

PAMS: Quantized Super-Resolution via Parameterized Max Scale

Authors : Huixia Li, Chenqian Yan, Shaohui Lin, Xiawu Zheng, Baochang Zhang, Fan Yang, Rongrong Ji

Published in: Computer Vision – ECCV 2020

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Deep convolutional neural networks (DCNNs) have shown dominant performance in the task of super-resolution (SR). However, their heavy memory cost and computation overhead significantly restrict their practical deployments on resource-limited devices, which mainly arise from the floating-point storage and operations between weights and activations. Although previous endeavors mainly resort to fixed-point operations, quantizing both weights and activations with fixed coding lengths may cause significant performance drop, especially on low bits. Specifically, most state-of-the-art SR models without batch normalization have a large dynamic quantization range, which also serves as another cause of performance drop. To address these two issues, we propose a new quantization scheme termed PArameterized Max Scale (PAMS), which applies the trainable truncated parameter to explore the upper bound of the quantization range adaptively. Finally, a structured knowledge transfer (SKT) loss is introduced to fine-tune the quantized network. Extensive experiments demonstrate that the proposed PAMS scheme can well compress and accelerate the existing SR models such as EDSR and RDN. Notably, 8-bit PAMS-EDSR improves PSNR on Set5 benchmark from 32.095 dB to 32.124 dB with 2.42\(\times \) compression ratio, which achieves a new state-of-the-art.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bevilacqua, M., Roumy, A., Guillemot, C., Alberimorel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: BMVC (2012) Bevilacqua, M., Roumy, A., Guillemot, C., Alberimorel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: BMVC (2012)
2.
go back to reference Cai, Z., He, X., Sun, J., Vasconcelos, N.: Deep learning with low precision by half-wave Gaussian quantization. In: CVPR (2017) Cai, Z., He, X., Sun, J., Vasconcelos, N.: Deep learning with low precision by half-wave Gaussian quantization. In: CVPR (2017)
3.
go back to reference Choi, J.: PACT: parameterized clipping activation for quantized neural networks. In: CVPR (2018) Choi, J.: PACT: parameterized clipping activation for quantized neural networks. In: CVPR (2018)
4.
go back to reference Choi, Y., El-Khamy, M., Lee, J.: Learning low precision deep neural networks through regularization. arXiv preprint arXiv:1809.00095 (2018) Choi, Y., El-Khamy, M., Lee, J.: Learning low precision deep neural networks through regularization. arXiv preprint arXiv:​1809.​00095 (2018)
5.
go back to reference Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or \(-\)1. CoRR abs/1602.02830 (2016) Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or \(-\)1. CoRR abs/1602.02830 (2016)
6.
go back to reference Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear structure within convolutional networks for efficient evaluation. In: NeurIPS (2014) Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear structure within convolutional networks for efficient evaluation. In: NeurIPS (2014)
8.
go back to reference Faraone, J., Fraser, N., Blott, M., Leong, P.: SYQ: learning symmetric quantization for efficient deep neural networks. In: CVPR (2018) Faraone, J., Fraser, N., Blott, M., Leong, P.: SYQ: learning symmetric quantization for efficient deep neural networks. In: CVPR (2018)
9.
go back to reference Haris, M., Shakhnarovich, G., Ukita, N.: Deep back-projection networks for super-resolution. In: CVPR (2018) Haris, M., Shakhnarovich, G., Ukita, N.: Deep back-projection networks for super-resolution. In: CVPR (2018)
10.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
11.
go back to reference He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: ICCV (2017) He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: ICCV (2017)
12.
go back to reference He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft filter pruning for accelerating deep convolutional neural networks. arXiv preprint arXiv:1808.06866 (2018) He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft filter pruning for accelerating deep convolutional neural networks. arXiv preprint arXiv:​1808.​06866 (2018)
13.
go back to reference He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median for deep convolutional neural networks acceleration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4340–4349 (2019) He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median for deep convolutional neural networks acceleration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4340–4349 (2019)
14.
go back to reference Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NeurIPS 2014 Workshops Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NeurIPS 2014 Workshops
15.
go back to reference Huang, J., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: CVPR (2015) Huang, J., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: CVPR (2015)
16.
go back to reference Ioffem, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015) Ioffem, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)
17.
go back to reference Jacob, B., et al.: Quantization and training of neural networks for efficient integer-arithmetic-only inference. In: CVPR (2018) Jacob, B., et al.: Quantization and training of neural networks for efficient integer-arithmetic-only inference. In: CVPR (2018)
18.
go back to reference Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: CVPR (2016) Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: CVPR (2016)
19.
go back to reference Kim, J.W., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: CVPR (2016) Kim, J.W., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: CVPR (2016)
20.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NeurIPS (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NeurIPS (2012)
21.
go back to reference Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR (2017) Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR (2017)
22.
go back to reference Li, Y., et al.: Exploiting kernel sparsity and entropy for interpretable CNN compression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2800–2809 (2019) Li, Y., et al.: Exploiting kernel sparsity and entropy for interpretable CNN compression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2800–2809 (2019)
23.
go back to reference Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: CVPR (2017) Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: CVPR (2017)
24.
go back to reference Lin, S., Ji, R., Chen, C., Tao, D., Luo, J.: Holistic CNN compression via low-rank decomposition with knowledge transfer. TPAMI 41(12), 2889–2905 (2018)CrossRef Lin, S., Ji, R., Chen, C., Tao, D., Luo, J.: Holistic CNN compression via low-rank decomposition with knowledge transfer. TPAMI 41(12), 2889–2905 (2018)CrossRef
25.
go back to reference Lin, S., Ji, R., Guo, X., Li, X.: Towards convolutional neural networks compression via global error reconstruction. In: IJCAI (2016) Lin, S., Ji, R., Guo, X., Li, X.: Towards convolutional neural networks compression via global error reconstruction. In: IJCAI (2016)
26.
go back to reference Lin, S., et al.: Towards optimal structured CNN pruning via generative adversarial learning. In: CVPR (2019) Lin, S., et al.: Towards optimal structured CNN pruning via generative adversarial learning. In: CVPR (2019)
27.
go back to reference Lin, S., Ji, R., Li, Y., Wu, Y., Huang, F., Zhang, B.: Accelerating convolutional networks via global & dynamic filter pruning. In: IJCAI, pp. 2425–2432 (2018) Lin, S., Ji, R., Li, Y., Wu, Y., Huang, F., Zhang, B.: Accelerating convolutional networks via global & dynamic filter pruning. In: IJCAI, pp. 2425–2432 (2018)
29.
go back to reference Ma, Y., Xiong, H., Hu, Z., Ma, L.: Efficient super resolution using binarized neural network. In: CVPR (2018) Ma, Y., Xiong, H., Hu, Z., Ma, L.: Efficient super resolution using binarized neural network. In: CVPR (2018)
30.
go back to reference Martin, D., Fowlkes, C.C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV (2001) Martin, D., Fowlkes, C.C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV (2001)
31.
go back to reference Paszke, A., et al.: Automatic differentiation in PyTorch. In: NeurIPS 2017 Workshops Paszke, A., et al.: Automatic differentiation in PyTorch. In: NeurIPS 2017 Workshops
32.
go back to reference Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classification using binary convolutional neural networks. CoRR abs/1603.05279, arXiv preprint arXiv:1603.05279 (2016) Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classification using binary convolutional neural networks. CoRR abs/1603.05279, arXiv preprint arXiv:​1603.​05279 (2016)
33.
go back to reference Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: FitNets: hints for thin deep nets. arXiv preprint arXiv:1412.6550 (2014) Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: FitNets: hints for thin deep nets. arXiv preprint arXiv:​1412.​6550 (2014)
34.
go back to reference Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.: MobileNetV2: inverted residuals and linear bottlenecks. In: CVPR (2018) Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.: MobileNetV2: inverted residuals and linear bottlenecks. In: CVPR (2018)
35.
go back to reference Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: CVPR (2017) Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: CVPR (2017)
36.
go back to reference Timofte, R., Agustsson, E., Van Gool, L., Yang, M., Zhang, L., et al.: NTIRE 2017 challenge on single image super-resolution: methods and results. In: CVPR 2017 Workshops Timofte, R., Agustsson, E., Van Gool, L., Yang, M., Zhang, L., et al.: NTIRE 2017 challenge on single image super-resolution: methods and results. In: CVPR 2017 Workshops
37.
go back to reference Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., et al.: Image quality assessment: from error visibility to structural similarity. TIP 13(4), 600–612 (2004) Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., et al.: Image quality assessment: from error visibility to structural similarity. TIP 13(4), 600–612 (2004)
38.
go back to reference Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In: ICLR (2017) Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In: ICLR (2017)
40.
go back to reference Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: CVPR (2018) Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: CVPR (2018)
41.
go back to reference Zheng, X., Ji, R., Tang, L., Zhang, B., Liu, J., Tian, Q.: Multinomial distribution learning for effective neural architecture search. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1304–1313 (2019) Zheng, X., Ji, R., Tang, L., Zhang, B., Liu, J., Tian, Q.: Multinomial distribution learning for effective neural architecture search. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1304–1313 (2019)
42.
go back to reference Zhou, S., Ni, Z., Zhou, X., Wen, H., Wu, Y., Zou, Y.: DoReFa-Net: training low bitwidth convolutional neural networks with low bitwidth gradients. CoRR abs/1606.06160 (2016) Zhou, S., Ni, Z., Zhou, X., Wen, H., Wu, Y., Zou, Y.: DoReFa-Net: training low bitwidth convolutional neural networks with low bitwidth gradients. CoRR abs/1606.06160 (2016)
43.
go back to reference Zhuang, B., Shen, C., Tan, M., Liu, L., Reid, I.: Towards effective low-bitwidth convolutional neural networks. In: CVPR (2018) Zhuang, B., Shen, C., Tan, M., Liu, L., Reid, I.: Towards effective low-bitwidth convolutional neural networks. In: CVPR (2018)
44.
go back to reference Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: ICCV (2016) Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: ICCV (2016)
Metadata
Title
PAMS: Quantized Super-Resolution via Parameterized Max Scale
Authors
Huixia Li
Chenqian Yan
Shaohui Lin
Xiawu Zheng
Baochang Zhang
Fan Yang
Rongrong Ji
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-58595-2_34

Premium Partner