Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

25-11-2020 | Issue 6/2021

The Journal of Supercomputing 6/2021

Parallelization of the self-organized maps algorithm for federated learning on distributed sources

Journal:
The Journal of Supercomputing > Issue 6/2021
Authors:
Ivan Kholod, Andrey Rukavitsyn, Alexey Paznikov, Sergei Gorlatch
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

This paper describes a formally based approach for parallelizing the Kohonen algorithm used for the federated learning process in a special kind of neural networks—Self-Organizing Maps. Our approach enables executing the parallel algorithm version on the distributed data sources, taking into account the kind of data distribution on the nodes. Compared to the traditional approaches, we distinguish two kinds of data distributions—horizontal and vertical: for both, our suggested approach avoids gathering data in a single storage, but rather moves computations nearer to the data source nodes. This reduces the execution time of the algorithm, the network traffic, and the risk of an unauthorized access to the data during their transmission. Our experimental evaluation demonstrates the advantages of the approach.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 6/2021

The Journal of Supercomputing 6/2021 Go to the issue

Premium Partner

    Image Credits