Skip to main content
Top
Published in:

30-01-2024

Parameter Estimation for Geometric Lévy Processes with Constant Volatility

Authors: Sher Chhetri, Hongwei Long, Cory Ball

Published in: Annals of Data Science | Issue 1/2025

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article discusses the importance of parameter estimation for geometric Lévy processes with constant volatility, focusing on the alpha-stable geometric Lévy process. It introduces a sample characteristic function approach for estimating parameters and explores the asymptotic behavior of these estimators. The method is applied to the Dow Jones Industrial Average dataset, demonstrating its practical applicability. The study also highlights the limitations and future research directions, including the potential impact of model misspecification and the need for comparative studies with other estimation methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Aluffi-Pentini F, Parisi V, Zirilli F (1985) Global optimization and stochastic differential equations. J Optim Theory Appl 47:1–16 Aluffi-Pentini F, Parisi V, Zirilli F (1985) Global optimization and stochastic differential equations. J Optim Theory Appl 47:1–16
2.
go back to reference Leander J, Lundh T, Jirstrand M (2014) Stochastic differential equations as a tool to regularize the parameter estimation problem for continuous time dynamical systems given discrete-time measurements. Math Biosci 251:54–62 Leander J, Lundh T, Jirstrand M (2014) Stochastic differential equations as a tool to regularize the parameter estimation problem for continuous time dynamical systems given discrete-time measurements. Math Biosci 251:54–62
3.
go back to reference Ombach J (2007) A proof of convergence of general stochastic search for global minimum. J Differ Equ Appl 13(8–9):795–802 Ombach J (2007) A proof of convergence of general stochastic search for global minimum. J Differ Equ Appl 13(8–9):795–802
4.
go back to reference Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York
5.
go back to reference Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization based data mining: theory and applications. Springer, Berlin Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization based data mining: theory and applications. Springer, Berlin
6.
go back to reference Shi Y (2022) Advances in big data analytics: theory, algorithm and practice. Springer, Singapore Shi Y (2022) Advances in big data analytics: theory, algorithm and practice. Springer, Singapore
7.
go back to reference Davis W (2023) Reconstruction of stochastic dynamics from large streamed datasets. Phys Rev E 108:054110 Davis W (2023) Reconstruction of stochastic dynamics from large streamed datasets. Phys Rev E 108:054110
8.
go back to reference Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4(2):149–178 Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4(2):149–178
9.
go back to reference Cheng J (2022) Financial data analysis and application based on big data mining technology. Comput Intell Neurosci: 6711470 Cheng J (2022) Financial data analysis and application based on big data mining technology. Comput Intell Neurosci: 6711470
10.
go back to reference Crovella M, Taqqu M, Bestavros A (1998) Heavy-tailed probability distributions in the world wide web. In: Adler R, Feldman R, Taqqu M (eds) A practical guide to heavy tails: statistical techniques and applications. Chapman and Hall, New York, pp 3–26 Crovella M, Taqqu M, Bestavros A (1998) Heavy-tailed probability distributions in the world wide web. In: Adler R, Feldman R, Taqqu M (eds) A practical guide to heavy tails: statistical techniques and applications. Chapman and Hall, New York, pp 3–26
11.
go back to reference Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Polit Econ 81:637–654 Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Polit Econ 81:637–654
12.
go back to reference Mandelbrot B (1963) The variation of certain speculative prices. J Bus 38:349–419 Mandelbrot B (1963) The variation of certain speculative prices. J Bus 38:349–419
13.
go back to reference Fama E (1965) The behavior of stock market prices. J Bus 38:34–105 Fama E (1965) The behavior of stock market prices. J Bus 38:34–105
14.
go back to reference Schoutens W (2003) Lévy processes in finance: pricing financial derivatives. Wiley, Hoboken Schoutens W (2003) Lévy processes in finance: pricing financial derivatives. Wiley, Hoboken
15.
go back to reference Kyprianou A, Schoutens W, Wilmott P (2005) Exotic option pricing and advancedLévy models. Wiley, Chichester Kyprianou A, Schoutens W, Wilmott P (2005) Exotic option pricing and advancedLévy models. Wiley, Chichester
16.
go back to reference Ditlevsen P (1999) Anomalous jumping in a double-well potential. Phys Rev E 60:172–179 Ditlevsen P (1999) Anomalous jumping in a double-well potential. Phys Rev E 60:172–179
17.
go back to reference Ditlevsen P (1999) Observation of alpha-stable noise induced millennial climate changes from an ice-core record. Geophys Res Lett 26:1441–1444 Ditlevsen P (1999) Observation of alpha-stable noise induced millennial climate changes from an ice-core record. Geophys Res Lett 26:1441–1444
18.
go back to reference Schertzer D, Larcheveque M, Duan J, Yanovsky V, Lovejoy S (2001) Fractional Fokker-Planck equation for nonlinear stochastic differential equations driven by non-gaussian Lévy stable noises. J Math Phys 42:200–212 Schertzer D, Larcheveque M, Duan J, Yanovsky V, Lovejoy S (2001) Fractional Fokker-Planck equation for nonlinear stochastic differential equations driven by non-gaussian Lévy stable noises. J Math Phys 42:200–212
19.
go back to reference Ilow J, Hatzinakos D (1998) Analytic alpha-stable noise modeling in a Poisson field of interferers or scatterers. IEEE Trans Sign Process 46(6):1601–1611 Ilow J, Hatzinakos D (1998) Analytic alpha-stable noise modeling in a Poisson field of interferers or scatterers. IEEE Trans Sign Process 46(6):1601–1611
20.
go back to reference Nikias CL, Shao M (1995) Signal processing with alpha-stable distributions and applications. Wiley, New York Nikias CL, Shao M (1995) Signal processing with alpha-stable distributions and applications. Wiley, New York
21.
go back to reference Mikosch T, Resnick S, Rootzen H, Stegeman A (2002) Is network traffic approximated stable Lévy motion or fractional Brownian motion? Ann Appl Probab 12:23–68 Mikosch T, Resnick S, Rootzen H, Stegeman A (2002) Is network traffic approximated stable Lévy motion or fractional Brownian motion? Ann Appl Probab 12:23–68
22.
go back to reference Zhou Y, Li R, Zhao Z, Zhou X, Zhang H (2015) On the alpha-stable distribution of base stations in cellular networks. IEEE Commun Lett 19(10):1750–1753 Zhou Y, Li R, Zhao Z, Zhou X, Zhang H (2015) On the alpha-stable distribution of base stations in cellular networks. IEEE Commun Lett 19(10):1750–1753
23.
go back to reference Merton RC (1976) Option pricing when underlying stock returns are discontinuous. J Financ Econ 3:125–144 Merton RC (1976) Option pricing when underlying stock returns are discontinuous. J Financ Econ 3:125–144
24.
go back to reference Liptser RS, Shiryaev AN (2001) Statistics of random processes II: applications, vol 2. Springer-Verlag, Berlin Heidelberg Liptser RS, Shiryaev AN (2001) Statistics of random processes II: applications, vol 2. Springer-Verlag, Berlin Heidelberg
25.
go back to reference Breton AL (1976) On continuous and discrete sampling for parameter estimation in diffusion type processes. Math Program Stud 5:124–144 Breton AL (1976) On continuous and discrete sampling for parameter estimation in diffusion type processes. Math Program Stud 5:124–144
26.
go back to reference Dorogovcev A (1976) The consistency of an estimate of a parameter of a stochastic differential equation. Math Statist 10:73–82 Dorogovcev A (1976) The consistency of an estimate of a parameter of a stochastic differential equation. Math Statist 10:73–82
27.
go back to reference Kasonga R (1988) The consistency of a nonlinear least squares estimator for diffusion processes. Stoch Process Appl 30:263–275 Kasonga R (1988) The consistency of a nonlinear least squares estimator for diffusion processes. Stoch Process Appl 30:263–275
28.
go back to reference Hu Y, Long H (2007) Parameter estimation for Ornstein–Uhlenbeck processes driven by alpha-stable Lévy motions. Commun Stoch Anal 1:175–192 Hu Y, Long H (2007) Parameter estimation for Ornstein–Uhlenbeck processes driven by alpha-stable Lévy motions. Commun Stoch Anal 1:175–192
29.
go back to reference Hu Y, Long H (2009) Least squares estimator for Ornstein–Uhlenbeck processes driven by alpha-stable stochastic process. Stoch Process Appl 119(2):2465–2480 Hu Y, Long H (2009) Least squares estimator for Ornstein–Uhlenbeck processes driven by alpha-stable stochastic process. Stoch Process Appl 119(2):2465–2480
30.
go back to reference Shimizu Y, Yoshida N (2006) Estimation of parameters for diffusion processes with jumps from discrete observations. Stat Inference Stoch Process 9:227–277 Shimizu Y, Yoshida N (2006) Estimation of parameters for diffusion processes with jumps from discrete observations. Stat Inference Stoch Process 9:227–277
31.
go back to reference Long H, Ma C, Shimizu Y (2017) Least squares estimators for stochastic differential equations driven by small Lévy noise. Stoch Process Appl 127:1475–1495 Long H, Ma C, Shimizu Y (2017) Least squares estimators for stochastic differential equations driven by small Lévy noise. Stoch Process Appl 127:1475–1495
32.
go back to reference Long H, Shimizu Y, Sun W (2013) Least squares estimators for discretely observed stochastic processes driven by small Lévy noises. J Multivar Anal 116:422–439 Long H, Shimizu Y, Sun W (2013) Least squares estimators for discretely observed stochastic processes driven by small Lévy noises. J Multivar Anal 116:422–439
33.
go back to reference Aït-Sahalia Y (2002) Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica 70(1):223–262 Aït-Sahalia Y (2002) Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica 70(1):223–262
34.
go back to reference Belovas I, Kabasinskas A, Sakalauskas L (2006) A study of stable models of stock markets. Inf Technol Contr 35(1):34–56 Belovas I, Kabasinskas A, Sakalauskas L (2006) A study of stable models of stock markets. Inf Technol Contr 35(1):34–56
35.
go back to reference Fama E, Roll R (1971) Parameter estimates for symmetric stable distributions. J Am Stat Assoc 66:331–338 Fama E, Roll R (1971) Parameter estimates for symmetric stable distributions. J Am Stat Assoc 66:331–338
36.
go back to reference Koutrouvelis I (1981) An iterative procedure for the estimation of the parameters of stable laws. Commun Stat Simul Comput 10:17–28 Koutrouvelis I (1981) An iterative procedure for the estimation of the parameters of stable laws. Commun Stat Simul Comput 10:17–28
37.
go back to reference Mittnik S, Rachev S, Doganoglu T, Chenyao D (1999) Maximum likelihood estimation of stable Paretian models. Math Comput Model 29:275–293 Mittnik S, Rachev S, Doganoglu T, Chenyao D (1999) Maximum likelihood estimation of stable Paretian models. Math Comput Model 29:275–293
38.
go back to reference Press J (1972) Estimation in univariate and multivariate stable distributions. J Am Stat Assoc 67:842–846 Press J (1972) Estimation in univariate and multivariate stable distributions. J Am Stat Assoc 67:842–846
39.
go back to reference Zolotarev, VM (1986) One-dimensional stable distributions. In: Translations of mathematical monographs, vol. 65. American Mathematical Society, Providence, Rhode Island Zolotarev, VM (1986) One-dimensional stable distributions. In: Translations of mathematical monographs, vol. 65. American Mathematical Society, Providence, Rhode Island
40.
go back to reference McCulloch JH (1986) Simple consistent estimators of stable distribution parameters. Commun Stat: Simulat Comput 15(4):1109–1136 McCulloch JH (1986) Simple consistent estimators of stable distribution parameters. Commun Stat: Simulat Comput 15(4):1109–1136
41.
go back to reference DuMouchel WH (1973) On the asymptotic normality of the maximum likelihood estimator when sampling from a stable distribution. Ann Stat 1:948–957 DuMouchel WH (1973) On the asymptotic normality of the maximum likelihood estimator when sampling from a stable distribution. Ann Stat 1:948–957
42.
go back to reference DuMouchel WH (1973) Stable distributions in statistical inference I. Symmetric stable distributions compared to other symmetric long-tailed distributions. J Amer Statist Assoc 68:469–477 DuMouchel WH (1973) Stable distributions in statistical inference I. Symmetric stable distributions compared to other symmetric long-tailed distributions. J Amer Statist Assoc 68:469–477
43.
go back to reference DuMouchel WH (1975) Stable distributions in statistical inference II. Information from stably distributed samples. J Amer Statist Assoc 70:386–393 DuMouchel WH (1975) Stable distributions in statistical inference II. Information from stably distributed samples. J Amer Statist Assoc 70:386–393
44.
go back to reference Nolan JP (2001) Maximum likelihood estimation and diagnostics for stable distributions. In: Barndorff-Nielsen OE, Mikosch T, Resnick S (eds) Lévy processes. Birkhaeuser, Boston, pp 331–338 Nolan JP (2001) Maximum likelihood estimation and diagnostics for stable distributions. In: Barndorff-Nielsen OE, Mikosch T, Resnick S (eds) Lévy processes. Birkhaeuser, Boston, pp 331–338
45.
go back to reference Heathcote CR (1977) The integrated squared error estimation of parameters. Biometrika 64:255–264 Heathcote CR (1977) The integrated squared error estimation of parameters. Biometrika 64:255–264
46.
go back to reference Paulson AS, Holcomb EW, Leitch RA (1975) The estimation of the parameters of the stable laws. Biometrika 62:163–170 Paulson AS, Holcomb EW, Leitch RA (1975) The estimation of the parameters of the stable laws. Biometrika 62:163–170
47.
go back to reference Koutrouvelis I (1980) Regression-type estimation of the parameters of stable laws. J Am Stat Assoc 69:108–113 Koutrouvelis I (1980) Regression-type estimation of the parameters of stable laws. J Am Stat Assoc 69:108–113
48.
go back to reference Feuerverger A, McDunnough P (1981) On the efficiency of empirical characteristic functions procedures. J Roy Stat Soc Ser B 43:20–27 Feuerverger A, McDunnough P (1981) On the efficiency of empirical characteristic functions procedures. J Roy Stat Soc Ser B 43:20–27
49.
go back to reference Marohn F (1999) Estimating the index of a stable law via the pot-method. Statist Probab Lett 41:413–423 Marohn F (1999) Estimating the index of a stable law via the pot-method. Statist Probab Lett 41:413–423
50.
go back to reference Tsihrintzis GA, Nikias CL (1996) Fast estimation of the parameters of alpha-stable impulsive interference. IEEE Trans Sign Process 44(6):1492–1503 Tsihrintzis GA, Nikias CL (1996) Fast estimation of the parameters of alpha-stable impulsive interference. IEEE Trans Sign Process 44(6):1492–1503
51.
go back to reference Nolan JP (2018) Stable distributions: models for heavy tailed data. Birkhauser, Boston Nolan JP (2018) Stable distributions: models for heavy tailed data. Birkhauser, Boston
52.
go back to reference Rachev S (2003) Handbook of heavy tailed distributions in finance. Handbooks in finance. Elsevier Science, North Holland Rachev S (2003) Handbook of heavy tailed distributions in finance. Handbooks in finance. Elsevier Science, North Holland
53.
go back to reference Uchaikin VV, Zolotarev VM (1999) Chance and stability: stable distributions and their applications. De Gruyter, Berlin, Boston Uchaikin VV, Zolotarev VM (1999) Chance and stability: stable distributions and their applications. De Gruyter, Berlin, Boston
54.
go back to reference Akgiray V, Lamoureux CG (1989) Estimation of stable laws parameters: a comparative study. J Bus Econ Statist 7:85–93 Akgiray V, Lamoureux CG (1989) Estimation of stable laws parameters: a comparative study. J Bus Econ Statist 7:85–93
55.
go back to reference Besbeas P, Morgan BJT (2008) Improved estimation of the stable laws. Stat Comput 18:219–231 Besbeas P, Morgan BJT (2008) Improved estimation of the stable laws. Stat Comput 18:219–231
56.
go back to reference Höpfner R, Rüschendorf L (1999) Comparison of estimators in stable models. Math Comput Model 29:145–160 Höpfner R, Rüschendorf L (1999) Comparison of estimators in stable models. Math Comput Model 29:145–160
57.
go back to reference Woerner J (2001) Statistical analysis for discretely observed Lévy processes. Dissertation, University of Freiburg Woerner J (2001) Statistical analysis for discretely observed Lévy processes. Dissertation, University of Freiburg
58.
go back to reference Aït-Sahalia Y, Jacod J (2007) Volatility estimators for discretely sampled Lévy processes. Ann Stat 35(1):355–392 Aït-Sahalia Y, Jacod J (2007) Volatility estimators for discretely sampled Lévy processes. Ann Stat 35(1):355–392
59.
go back to reference Masuda H (2009) Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density. J Japan Statist Soc 39:49–75 Masuda H (2009) Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density. J Japan Statist Soc 39:49–75
60.
go back to reference Masuda H (2015) Parameter estimation of Lévy processes. In: Lévy Matters IV. Lecture Notes in Mathematics, vol 2128, pp 179-286 Masuda H (2015) Parameter estimation of Lévy processes. In: Lévy Matters IV. Lecture Notes in Mathematics, vol 2128, pp 179-286
61.
go back to reference Cont R, Tankov P (2004) Financial modelling with jump processes. Chapman and Hall, CRC Financial Mathematics Series Cont R, Tankov P (2004) Financial modelling with jump processes. Chapman and Hall, CRC Financial Mathematics Series
62.
go back to reference Cheng Y, Hu Y, Long H (2020) The generalized moment estimators for alpha-stable Ornstein–Uhlenbeck motions form discrete observations. Stat Infer Stoch Process 23(1):53–81 Cheng Y, Hu Y, Long H (2020) The generalized moment estimators for alpha-stable Ornstein–Uhlenbeck motions form discrete observations. Stat Infer Stoch Process 23(1):53–81
63.
go back to reference Billingsley P (1995) Probability and measures, 3rd edn. Wiley, New York Billingsley P (1995) Probability and measures, 3rd edn. Wiley, New York
64.
go back to reference Kanter M (1975) Stable densities under change of scale and total variation inequalities. Ann Probab 3(4):697–707 Kanter M (1975) Stable densities under change of scale and total variation inequalities. Ann Probab 3(4):697–707
65.
go back to reference Chambers JM, Mallows CL, Stuck BW (1976) A method for simulating stable random variables. J Amer Statist Assoc 71(354):340–344 Chambers JM, Mallows CL, Stuck BW (1976) A method for simulating stable random variables. J Amer Statist Assoc 71(354):340–344
66.
go back to reference Janicki A, Weron A (1994) Simulation and chaotic behavior of alpha-stable stochastic processes. Marcel Dekker, New York Janicki A, Weron A (1994) Simulation and chaotic behavior of alpha-stable stochastic processes. Marcel Dekker, New York
67.
go back to reference Weron A, Weron R (1995) Computer simulation of Lévy -stable variables and processes. In: Chaos—interplay between stochastic and deterministic behaviour. Lectures Notes in Phys. vol 457. Springer, Berlin, pp 379–392 Weron A, Weron R (1995) Computer simulation of Lévy -stable variables and processes. In: Chaos—interplay between stochastic and deterministic behaviour. Lectures Notes in Phys. vol 457. Springer, Berlin, pp 379–392
68.
go back to reference Bielinskyi A, Semerikov S, Solovieva V, Soloviev V (2019) Lévy’s stable distribution for stock crash detecting. SHS Web of Conf 65:06006 Bielinskyi A, Semerikov S, Solovieva V, Soloviev V (2019) Lévy’s stable distribution for stock crash detecting. SHS Web of Conf 65:06006
71.
go back to reference Knight JL, Satchel SE (1997) The cumulant generating function estimation method: implementation and asymptotic efficiency. Economet Theor 13(2):17–184 Knight JL, Satchel SE (1997) The cumulant generating function estimation method: implementation and asymptotic efficiency. Economet Theor 13(2):17–184
72.
go back to reference Kogon SM, Williams DB (1998) Characteristic function-based estimation of stable distribution parameter. In: Adler R, Feldman R, Taqqu M (eds) A practical guide to heavy tails. Birkhauser Basel, Boston, pp 311–335 Kogon SM, Williams DB (1998) Characteristic function-based estimation of stable distribution parameter. In: Adler R, Feldman R, Taqqu M (eds) A practical guide to heavy tails. Birkhauser Basel, Boston, pp 311–335
73.
go back to reference Krutto A (2018) Empirical cumulant function based parameter estimation in stable laws. Acta Comm Univ Tart Math 22(2):311–338 Krutto A (2018) Empirical cumulant function based parameter estimation in stable laws. Acta Comm Univ Tart Math 22(2):311–338
74.
go back to reference White H (1982) Maximum likelihood estimation of misspecified models. Econometrica 50(1):1–25 White H (1982) Maximum likelihood estimation of misspecified models. Econometrica 50(1):1–25
75.
go back to reference Matsui M, Takemura A (2008) Goodness-of-fit tests for symmetric stable distributions-empirical characteristic function approach. TEST 17:546–566 Matsui M, Takemura A (2008) Goodness-of-fit tests for symmetric stable distributions-empirical characteristic function approach. TEST 17:546–566
Metadata
Title
Parameter Estimation for Geometric Lévy Processes with Constant Volatility
Authors
Sher Chhetri
Hongwei Long
Cory Ball
Publication date
30-01-2024
Publisher
Springer Berlin Heidelberg
Published in
Annals of Data Science / Issue 1/2025
Print ISSN: 2198-5804
Electronic ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-024-00513-8

Premium Partner