Skip to main content
Top

09-02-2025 | Original Article

Parameter optimization method of injection molding process based on genetic algorithm and support vector machine regression

Author: Zhi Shan

Published in: International Journal on Interactive Design and Manufacturing (IJIDeM)

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To enhance the quality of injection molded products and refine the injection molding process parameters, a hybrid algorithm combining Genetic Algorithm (GA), Support Vector Regression (SVR), and Particle Swarm Optimization (PSO) was introduced. In this optimization framework, PSO-SVR established a Non-linear functional relationship between warpage deformation and key process parameters, including mold temperature, melt temperature, injection time, holding pressure, and holding time (as input variables), with warpage deformation serving as the output variable. A comparative analysis with other prevalent optimization algorithms highlighted the effectiveness of the GA-SVR-PSO hybrid approach in optimizing these parameters. Notably, the PSO-SVR prediction model exhibited superior predictive capabilities, achieving a mean square error of 0.082701, outperforming other models. By employing SVR-PSO as the fitness function and utilizing GA for further optimization, the warpage deformation in injection molded products was reduced by 24.5%, thereby significantly elevating the overall product quality.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Xuemei, S., Qian, M.J.H.: Moldflow analysis and process optimization of mobile phone case injection molding. Eng. Plast. Appl. 51(5), 75–80 (2023)MATH Xuemei, S., Qian, M.J.H.: Moldflow analysis and process optimization of mobile phone case injection molding. Eng. Plast. Appl. 51(5), 75–80 (2023)MATH
2.
go back to reference XH, S., Wang, S., Wang, H., Gao, X.: Parameters optimization of two-colored injection molding process based on moldflow and orthogonal test. Plastics 44(2), 113–116 (2015)MATH XH, S., Wang, S., Wang, H., Gao, X.: Parameters optimization of two-colored injection molding process based on moldflow and orthogonal test. Plastics 44(2), 113–116 (2015)MATH
3.
go back to reference Qin, L., Zhang, J.-X., Feng, W.: Multi-objective optimization of injection molding process parameters of automobile rear bumper based on grey-taguchi method. Plastics 51(6), 72–78 (2022)MATH Qin, L., Zhang, J.-X., Feng, W.: Multi-objective optimization of injection molding process parameters of automobile rear bumper based on grey-taguchi method. Plastics 51(6), 72–78 (2022)MATH
4.
go back to reference Wu, J.: Process optimization of injection mold for large plastic parts of automobile dashboard based on moldflow. China Plast. 35(12), 121–128 (2021)MATH Wu, J.: Process optimization of injection mold for large plastic parts of automobile dashboard based on moldflow. China Plast. 35(12), 121–128 (2021)MATH
5.
go back to reference Wang, L.-X., Yang, Y., Wang, B., Shen, C.-Y.: Investigation of the influence of processing parameter on volumetric shrinkage variation of plastic injection molded parts and process optimization. Gaofenzi Cailiao Kexue yu Gongcheng(Polym. Mater. Sci. Eng.) 20(2), 173–176 (2004)MATH Wang, L.-X., Yang, Y., Wang, B., Shen, C.-Y.: Investigation of the influence of processing parameter on volumetric shrinkage variation of plastic injection molded parts and process optimization. Gaofenzi Cailiao Kexue yu Gongcheng(Polym. Mater. Sci. Eng.) 20(2), 173–176 (2004)MATH
6.
go back to reference Wang, G., Zhao, G., Li, H., Guan, Y.: Influence factor analysis of warpage and optimization of process parameters in plastic injection molding of thin-wall plastic parts based on taguchi optimization methodn. China Mech. Eng. 20(4), 488–492 (2009) Wang, G., Zhao, G., Li, H., Guan, Y.: Influence factor analysis of warpage and optimization of process parameters in plastic injection molding of thin-wall plastic parts based on taguchi optimization methodn. China Mech. Eng. 20(4), 488–492 (2009)
7.
go back to reference Chakraborty, T., Chakraborty, A.: Optimisation of injection molding process parameters for improvement in tensile strength using the taguchi experimental design. Int. J. Comadem 26(1), 13–22 (2023)MATH Chakraborty, T., Chakraborty, A.: Optimisation of injection molding process parameters for improvement in tensile strength using the taguchi experimental design. Int. J. Comadem 26(1), 13–22 (2023)MATH
8.
go back to reference Ozcelik, B., Erzurumlu, T.: Comparison of the warpage optimization in the plastic injection molding using anova, neural network model and genetic algorithm. J. Mater. Process. Technol. 171(3), 437–445 (2006)CrossRef Ozcelik, B., Erzurumlu, T.: Comparison of the warpage optimization in the plastic injection molding using anova, neural network model and genetic algorithm. J. Mater. Process. Technol. 171(3), 437–445 (2006)CrossRef
9.
go back to reference Lu, N.-y, Gong, G.-x, Yang, Y., Lu, J.-h: Multi-objective process parameter optimization for energy saving in injection molding process. J. Zhejiang Univ. Sci. A 13(5), 382–394 (2012)CrossRefMATH Lu, N.-y, Gong, G.-x, Yang, Y., Lu, J.-h: Multi-objective process parameter optimization for energy saving in injection molding process. J. Zhejiang Univ. Sci. A 13(5), 382–394 (2012)CrossRefMATH
10.
go back to reference Meiabadi, M.S., Vafaei, A., Sharifi, F.: Optimization of plastic injection molding process by combination of artificial neural network and genetic algorithm. J. Optim. Ind. Eng. 6(13), 49–54 (2013)MATH Meiabadi, M.S., Vafaei, A., Sharifi, F.: Optimization of plastic injection molding process by combination of artificial neural network and genetic algorithm. J. Optim. Ind. Eng. 6(13), 49–54 (2013)MATH
11.
go back to reference Deng, Y.-M., Lam, Y., Britton, G.: Optimization of injection moulding conditions with user-definable objective functions based on a genetic algorithm. Int. J. Product. Res. 42(7), 1365–1390 (2004)CrossRefMATH Deng, Y.-M., Lam, Y., Britton, G.: Optimization of injection moulding conditions with user-definable objective functions based on a genetic algorithm. Int. J. Product. Res. 42(7), 1365–1390 (2004)CrossRefMATH
13.
go back to reference Li, J., Wang, J., Pei, Y., Wang, G.: Research and optimization of zno-mocvd process parameters using cfd and genetic algorithm. Ceram. Int. 46(1), 685–695 (2020)CrossRefMATH Li, J., Wang, J., Pei, Y., Wang, G.: Research and optimization of zno-mocvd process parameters using cfd and genetic algorithm. Ceram. Int. 46(1), 685–695 (2020)CrossRefMATH
14.
go back to reference Li, L., Wu, X.: Research on injection molding process of electronic instrument shell and mold design. Plast. Sci. Technol. 51(4), 88–92 (2023)MATH Li, L., Wu, X.: Research on injection molding process of electronic instrument shell and mold design. Plast. Sci. Technol. 51(4), 88–92 (2023)MATH
15.
go back to reference Wu, J., Shao, H., Chen, A., Zhang, P.: Multi-response optimization of injection molding process for front bumper of car based on cae analysis and entropy method. Eng. Plast. Appl. 51(2), 74–83 (2023)MATH Wu, J., Shao, H., Chen, A., Zhang, P.: Multi-response optimization of injection molding process for front bumper of car based on cae analysis and entropy method. Eng. Plast. Appl. 51(2), 74–83 (2023)MATH
16.
go back to reference Wang, G., Zhao, G., Li, H., Guan, Y., Chen, L.: Heat response simulation of variotherm injection molding and optimization of mold structure. J. Mech. Eng. 45(6), 216–221 (2009)CrossRefMATH Wang, G., Zhao, G., Li, H., Guan, Y., Chen, L.: Heat response simulation of variotherm injection molding and optimization of mold structure. J. Mech. Eng. 45(6), 216–221 (2009)CrossRefMATH
17.
go back to reference Tripathi, S., Mittermayr, C., Muhr, D., Jodlbauer, H.: Large scale predictability analysis of process variables from injection molding machines. Proc. Comput. Sci. 180, 545–560 (2021)CrossRefMATH Tripathi, S., Mittermayr, C., Muhr, D., Jodlbauer, H.: Large scale predictability analysis of process variables from injection molding machines. Proc. Comput. Sci. 180, 545–560 (2021)CrossRefMATH
18.
go back to reference Wang, J., Shen, L., Bi, Y., Lei, J.: Modeling and optimization of a light-duty diesel engine at high altitude with a support vector machine and a genetic algorithm. Fuel 285, 119137 (2021)CrossRef Wang, J., Shen, L., Bi, Y., Lei, J.: Modeling and optimization of a light-duty diesel engine at high altitude with a support vector machine and a genetic algorithm. Fuel 285, 119137 (2021)CrossRef
19.
go back to reference Chen, Y.-h, Xie, Y.-z, Ge, X.-y, Zhou, Y., Zhang, D.-z, Jing, Y., Wu, J., Qiu, A.-c: Vulnerability assessment of equipment excited by disturbances based on support vector machine and gaussian process regression. IEEE Trans. Electromagn. Compatibility 63(1), 103–110 (2020)CrossRefMATH Chen, Y.-h, Xie, Y.-z, Ge, X.-y, Zhou, Y., Zhang, D.-z, Jing, Y., Wu, J., Qiu, A.-c: Vulnerability assessment of equipment excited by disturbances based on support vector machine and gaussian process regression. IEEE Trans. Electromagn. Compatibility 63(1), 103–110 (2020)CrossRefMATH
20.
go back to reference Jarndal, A., Husain, S., Hashmi, M.: On temperature-dependent small-signal modelling of gan hemts using artificial neural networks and support vector regression. IET Microwaves, Antenn. Propagat. 15(8), 937–953 (2021)CrossRefMATH Jarndal, A., Husain, S., Hashmi, M.: On temperature-dependent small-signal modelling of gan hemts using artificial neural networks and support vector regression. IET Microwaves, Antenn. Propagat. 15(8), 937–953 (2021)CrossRefMATH
21.
go back to reference Wang, X., Wang, Q., Zheng, J., Chen, T., Zheng, Y.: Optimization of injection molding parameters for quality and energy consumption based on genetic algorithm and bp neural network. Eng. Plast. Appl. 51(2), 67–73 (2023)MATH Wang, X., Wang, Q., Zheng, J., Chen, T., Zheng, Y.: Optimization of injection molding parameters for quality and energy consumption based on genetic algorithm and bp neural network. Eng. Plast. Appl. 51(2), 67–73 (2023)MATH
22.
go back to reference Shen, C., Wang, L., Zhang, Q.: Process optimization of injection molding by the combining ann/hga method. Polym. Mater. Sci. Eng. 21(5), 23–27 (2005)MATH Shen, C., Wang, L., Zhang, Q.: Process optimization of injection molding by the combining ann/hga method. Polym. Mater. Sci. Eng. 21(5), 23–27 (2005)MATH
24.
go back to reference Liang, H., Zou, J., Li, Z., Khan, M.J., Lu, Y.: Dynamic evaluation of drilling leakage risk based on fuzzy theory and pso-svr algorithm. Future Generation Comput. Syst. 95, 454–466 (2019)CrossRefMATH Liang, H., Zou, J., Li, Z., Khan, M.J., Lu, Y.: Dynamic evaluation of drilling leakage risk based on fuzzy theory and pso-svr algorithm. Future Generation Comput. Syst. 95, 454–466 (2019)CrossRefMATH
25.
go back to reference Aderyani, F.R., Mousavi, S.J., Jafari, F.: Short-term rainfall forecasting using machine learning-based approaches of pso-svr, lstm and cnn. J. Hydrol. 614, 128463 (2022) Aderyani, F.R., Mousavi, S.J., Jafari, F.: Short-term rainfall forecasting using machine learning-based approaches of pso-svr, lstm and cnn. J. Hydrol. 614, 128463 (2022)
26.
go back to reference Wang, L., Xia, Y., Lu, Y.: A Novel Forecasting Approach by the GA-SVR-GRNN Hybrid Deep Learning Algorithm for Oil Future Prices. Comput. Intell. Neurosci. 2022(1), 4952215 (2022)MATH Wang, L., Xia, Y., Lu, Y.: A Novel Forecasting Approach by the GA-SVR-GRNN Hybrid Deep Learning Algorithm for Oil Future Prices. Comput. Intell. Neurosci. 2022(1), 4952215 (2022)MATH
27.
go back to reference Yuan, F.C.: Parameters optimization using genetic algorithms in support vector regression for sales volume forecasting. Appl. Math. 03(30), 1480–1486 (2012)CrossRefMATH Yuan, F.C.: Parameters optimization using genetic algorithms in support vector regression for sales volume forecasting. Appl. Math. 03(30), 1480–1486 (2012)CrossRefMATH
28.
go back to reference Liu, S., Tai, H., Ding, Q., Li, D., Xu, L., Wei, Y.: A hybrid approach of support vector regression with genetic algorithm optimization for aquaculture water quality prediction. Math. Comput. Model. 58(3–4), 458–465 (2013)CrossRefMATH Liu, S., Tai, H., Ding, Q., Li, D., Xu, L., Wei, Y.: A hybrid approach of support vector regression with genetic algorithm optimization for aquaculture water quality prediction. Math. Comput. Model. 58(3–4), 458–465 (2013)CrossRefMATH
29.
go back to reference Ding, W., Fan, X., Guo, Y., Lu, X., Wang, D., Wang, C., Zhang, X.: Quality monitoring of injection molding based on TSO-SVM and MOSSA. J. Polym. Eng. 44(1), 64–72 (2024)CrossRefMATH Ding, W., Fan, X., Guo, Y., Lu, X., Wang, D., Wang, C., Zhang, X.: Quality monitoring of injection molding based on TSO-SVM and MOSSA. J. Polym. Eng. 44(1), 64–72 (2024)CrossRefMATH
30.
go back to reference Song, Z., Liu, S., Wang, X., Hu, Z.: Optimization and prediction of volume shrinkage and warpage of injection-molded thin-walled parts based on neural network. Int. J. Adv. Manuf. Technol. 109(3), 755–69 (2020)CrossRefMATH Song, Z., Liu, S., Wang, X., Hu, Z.: Optimization and prediction of volume shrinkage and warpage of injection-molded thin-walled parts based on neural network. Int. J. Adv. Manuf. Technol. 109(3), 755–69 (2020)CrossRefMATH
Metadata
Title
Parameter optimization method of injection molding process based on genetic algorithm and support vector machine regression
Author
Zhi Shan
Publication date
09-02-2025
Publisher
Springer Paris
Published in
International Journal on Interactive Design and Manufacturing (IJIDeM)
Print ISSN: 1955-2513
Electronic ISSN: 1955-2505
DOI
https://doi.org/10.1007/s12008-025-02239-0

Premium Partner