Skip to main content
Top

2024 | OriginalPaper | Chapter

Parameterized Families of Quadratic Fields with n-Rank at Least 2

Authors : Azizul Hoque, Kotyada Srinivas

Published in: Class Groups of Number Fields and Related Topics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We construct parameterized families of imaginary (resp. real) quadratic fields whose class groups have n-rank at least 2.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Chakraborty, K., Ram Murty, M.: On the number of real quadratic fields with class number divisible by 3. Proc. Am. Math. Soc. 131(1), 41–44 (2003) Chakraborty, K., Ram Murty, M.: On the number of real quadratic fields with class number divisible by 3. Proc. Am. Math. Soc. 131(1), 41–44 (2003)
3.
go back to reference Chakraborty, K., Hoque, A., Kishi, Y., Pandey, P.P.: Divisibility of the class numbers of imaginary quadratic fields. J. Number Theory 185, 339–348 (2018)MathSciNetCrossRef Chakraborty, K., Hoque, A., Kishi, Y., Pandey, P.P.: Divisibility of the class numbers of imaginary quadratic fields. J. Number Theory 185, 339–348 (2018)MathSciNetCrossRef
4.
go back to reference Chakraborty, K., Hoque, A.: Exponents of class groups of certain imaginary quadratic fields. Czechoslovak Math. J. 70(4), 1167–1178 (2020)MathSciNetCrossRef Chakraborty, K., Hoque, A.: Exponents of class groups of certain imaginary quadratic fields. Czechoslovak Math. J. 70(4), 1167–1178 (2020)MathSciNetCrossRef
5.
go back to reference Chakraborty, K., Hoque, A.: Lehmer sequence approach to the divisibility of class numbers of imaginary quadratic fields. Ramanujan J. 60(4), 913–923 (2023)MathSciNetCrossRef Chakraborty, K., Hoque, A.: Lehmer sequence approach to the divisibility of class numbers of imaginary quadratic fields. Ramanujan J. 60(4), 913–923 (2023)MathSciNetCrossRef
6.
go back to reference Cohen, H., Lenstra Jr., H.W.: Heuristics on class groups of number fields. In: Number Theory, Noordwijkerhout, 1983. Lecture Notes in Mathematics, vol. 1068, pp. 33–62. Springer, Berlin (1984) Cohen, H., Lenstra Jr., H.W.: Heuristics on class groups of number fields. In: Number Theory, Noordwijkerhout, 1983. Lecture Notes in Mathematics, vol. 1068, pp. 33–62. Springer, Berlin (1984)
8.
go back to reference Craig, M.: A construction for irregular discriminants. Osaka J. Math. 14, 365–402 (1977)MathSciNet Craig, M.: A construction for irregular discriminants. Osaka J. Math. 14, 365–402 (1977)MathSciNet
9.
go back to reference Erickson, C., Kaplan, N., Mendoza, N., Pacelli, A.M., Shayler, T.: Parameterized families of quadratic number fields with \(3\)-rank at least \(2\). Acta Arith. 130(2), 141–147 (2007)MathSciNetCrossRef Erickson, C., Kaplan, N., Mendoza, N., Pacelli, A.M., Shayler, T.: Parameterized families of quadratic number fields with \(3\)-rank at least \(2\). Acta Arith. 130(2), 141–147 (2007)MathSciNetCrossRef
10.
go back to reference Hoque, A.: On the exponents of class groups of some families of imaginary quadratic fields. Mediterr. J. Math. 18(4), Paper No. 153, 13 (2021) Hoque, A.: On the exponents of class groups of some families of imaginary quadratic fields. Mediterr. J. Math. 18(4), Paper No. 153, 13 (2021)
12.
go back to reference Llorente, P., Nart, E.: Effective determination of the decomposition of rational primes in a cubic field. Proc. Am. Math. Soc. 87, 579–585 (1983)MathSciNetCrossRef Llorente, P., Nart, E.: Effective determination of the decomposition of rational primes in a cubic field. Proc. Am. Math. Soc. 87, 579–585 (1983)MathSciNetCrossRef
13.
go back to reference Llorente, P., Quer, J.: On the \(3\)-Syllow group of the class group of quadratic fields. Math. Comp. 50, 321–333 (1988)MathSciNetCrossRef Llorente, P., Quer, J.: On the \(3\)-Syllow group of the class group of quadratic fields. Math. Comp. 50, 321–333 (1988)MathSciNetCrossRef
14.
go back to reference Luca, F., Pacelli, A.M.: Class groups of quadratic fields of \(3\)-rank at least \(2\): effective bounds. J. Number Theory 128(4), 796–804 (2008)MathSciNetCrossRef Luca, F., Pacelli, A.M.: Class groups of quadratic fields of \(3\)-rank at least \(2\): effective bounds. J. Number Theory 128(4), 796–804 (2008)MathSciNetCrossRef
15.
go back to reference Kishi, Y., Komatsu, T.: Imaginary quadratic fields whose ideal class groups have \(3\)-rank at least three. J. Number Theory 170, 46–54 (2017)MathSciNetCrossRef Kishi, Y., Komatsu, T.: Imaginary quadratic fields whose ideal class groups have \(3\)-rank at least three. J. Number Theory 170, 46–54 (2017)MathSciNetCrossRef
16.
go back to reference Mestre, J.F.: Courbes elliptiques et groups de classes d’idéaux de certains corps quadratiques. In: Seminar on Number Theory, 1979/1980, Exp. No. 15, pp. 18. University Bordeaux I, Talence (1980) Mestre, J.F.: Courbes elliptiques et groups de classes d’idéaux de certains corps quadratiques. In: Seminar on Number Theory, 1979/1980, Exp. No. 15, pp. 18. University Bordeaux I, Talence (1980)
17.
go back to reference Mestre, J.F.: Groupes de classes d’idéaux non cyclique de corps de nombre. In: Seminar on Number Theory, Paris 1981/1982, 189–200, Progress in Mathematics, vol. 38. Birkhäuser, Boston, MA (1983) Mestre, J.F.: Groupes de classes d’idéaux non cyclique de corps de nombre. In: Seminar on Number Theory, Paris 1981/1982, 189–200, Progress in Mathematics, vol. 38. Birkhäuser, Boston, MA (1983)
18.
go back to reference Nagell, T.: Über die Klassenzahl imaginär quadratischer, Zählkörper. Abh. Math. Semin. Univ. Hambg. 1, 140–150 (1922)CrossRef Nagell, T.: Über die Klassenzahl imaginär quadratischer, Zählkörper. Abh. Math. Semin. Univ. Hambg. 1, 140–150 (1922)CrossRef
19.
go back to reference Quer, J.: Corps quadratiques de 3-rang 6 et courbes elliptiques de rang 12, C. R. Acad. Sci. Paris Sér. I Math. 305, 215–218 (1987) Quer, J.: Corps quadratiques de 3-rang 6 et courbes elliptiques de rang 12, C. R. Acad. Sci. Paris Sér. I Math. 305, 215–218 (1987)
20.
go back to reference Soundararajan, K.: Divisibility of class numbers of imaginary quadratic fields. J. Lond. Math. Soc. 61, 681–690 (2000)MathSciNetCrossRef Soundararajan, K.: Divisibility of class numbers of imaginary quadratic fields. J. Lond. Math. Soc. 61, 681–690 (2000)MathSciNetCrossRef
21.
go back to reference Weinberger, P.J.: Real quadratic fields with class numbers divisible by \(n\). J. Number Theory 5, 237–241 (1973)MathSciNetCrossRef Weinberger, P.J.: Real quadratic fields with class numbers divisible by \(n\). J. Number Theory 5, 237–241 (1973)MathSciNetCrossRef
22.
go back to reference Yamamoto, Y.: On unramified Galois extensions of quadratic number fields. Osaka J. Math. 7, 57–76 (1970)MathSciNet Yamamoto, Y.: On unramified Galois extensions of quadratic number fields. Osaka J. Math. 7, 57–76 (1970)MathSciNet
23.
24.
go back to reference Yu, G.: Imaginary quadratic fields with class groups of \(3\)-rank at least \(2\). Manuscripta Math. 163(3–4), 569–574 (2020)MathSciNetCrossRef Yu, G.: Imaginary quadratic fields with class groups of \(3\)-rank at least \(2\). Manuscripta Math. 163(3–4), 569–574 (2020)MathSciNetCrossRef
Metadata
Title
Parameterized Families of Quadratic Fields with n-Rank at Least 2
Authors
Azizul Hoque
Kotyada Srinivas
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6911-7_9

Premium Partner