Skip to main content
Top

2024 | OriginalPaper | Chapter

Particle Swarm Optimization-Based Variables Decomposition Method for Global Optimization

Authors : Khelil Kassoul, Samir Brahim Belhaouari, Naoufel Cheikhrouhou

Published in: Mathematical Analysis and Numerical Methods

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents a novel approach to enhance the Particle Swarm Optimization (PSO) algorithm called PSO-VDM, designed to tackle global optimization problems. The method introduces a decomposition technique that divides complex problems into smaller subproblems, facilitating more effective exploration and exploitation of the search space. Additionally, it employs a jumping strategy based on an exponential function to prevent premature convergence. The algorithm's performance is rigorously evaluated using 13 classical benchmark functions and compared against state-of-the-art optimization algorithms. The results showcase PSO-VDM's superior exploitation capabilities on unimodal functions and strong exploration abilities on multimodal functions. Statistical analysis further validates the algorithm's effectiveness, making it a promising tool for optimization researchers and practitioners.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bansal, J.C., Singh, P.K., Pal, N.R. (eds.): Evolutionary and Swarm Intelligence Algorithms. Springer, Cham (2019) Bansal, J.C., Singh, P.K., Pal, N.R. (eds.): Evolutionary and Swarm Intelligence Algorithms. Springer, Cham (2019)
9.
11.
go back to reference Kazikova, A., Pluhacek, M., Viktorin, A., Senkerik, R.: New running technique for the bison algorithm. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing, pp. 417–426. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91253-0_39 Kazikova, A., Pluhacek, M., Viktorin, A., Senkerik, R.: New running technique for the bison algorithm. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing, pp. 417–426. Springer, Cham (2018). https://​doi.​org/​10.​1007/​978-3-319-91253-0_​39
14.
go back to reference Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), pp. 69–73. IEEE (1998). https://doi.org/10.1109/ICEC.1998.699146 Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), pp. 69–73. IEEE (1998). https://​doi.​org/​10.​1109/​ICEC.​1998.​699146
25.
go back to reference Yue, C.T., Price, K.V., Suganthan, P.N., Liang, J.J., Ali, M.Z., Qu, B.Y., Awad, N.H., Biswas, P.: Problem Definitions and Evaluation Criteria for the CEC 2020 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization, Technical Report 201911, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore (2019) Yue, C.T., Price, K.V., Suganthan, P.N., Liang, J.J., Ali, M.Z., Qu, B.Y., Awad, N.H., Biswas, P.: Problem Definitions and Evaluation Criteria for the CEC 2020 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization, Technical Report 201911, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore (2019)
Metadata
Title
Particle Swarm Optimization-Based Variables Decomposition Method for Global Optimization
Authors
Khelil Kassoul
Samir Brahim Belhaouari
Naoufel Cheikhrouhou
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4876-1_19

Premium Partner