Skip to main content
Top
Published in: Journal of Computational Neuroscience 2/2011

01-10-2011

Passive and active shaping of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells

Authors: Tamara Perez-Rosello, John L. Baker, Michele Ferrante, Satish Iyengar, Giorgio A. Ascoli, Germán Barrionuevo

Published in: Journal of Computational Neuroscience | Issue 2/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Although associational/commissural (A/C) and perforant path (PP) inputs to CA3b pyramidal cells play a central role in hippocampal mnemonic functions, the active and passive processes that shape A/C and PP AMPA and NMDA receptor-mediated unitary EPSP/EPSC (AMPA and NMDA uEPSP/uEPSC) have not been fully characterized yet. Here we find no differences in somatic amplitude between A/C and PP for either AMPA or NMDA uEPSPs. However, larger AMPA uEPSCs were evoked from proximal than from distal A/C or PP. Given the space-clamp constraints in CA3 pyramidal cells, these voltage clamp data suggest that the location-independence of A/C and PP AMPA uEPSP amplitudes is achieved in part through the activation of voltage dependent conductances at or near the soma. Moreover, similarity in uEPSC amplitudes for distal A/C and PP points to the additional participation of unclamped active conductances. Indeed, the pharmacological blockade of voltage-dependent conductances eliminates the location-independence of these inputs. In contrast, the location-independence of A/C and PP NMDA uEPSP/uEPSC amplitudes is maintained across all conditions indicating that propagation is not affected by active membrane processes. The location-independence for A/C uEPSP amplitudes may be relevant in the recruitment of CA3 pyramidal cells by other CA3 pyramidal cells. These data also suggest that PP excitation represents a significant input to CA3 pyramidal cells. Implication of the passive data on local synaptic properties is further investigated in the companion paper with a detailed computational model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Andrasfalvy, B. K., & Magee, J. C. (2001). Distance-dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons. The Journal of Neuroscience, 21, 9151–9159.PubMed Andrasfalvy, B. K., & Magee, J. C. (2001). Distance-dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons. The Journal of Neuroscience, 21, 9151–9159.PubMed
go back to reference Andrasfalvy, B. K., & Mody, I. (2006). Differences between the scaling of miniature IPSCs and EPSCs recorded in the dendrites of CA1 mouse pyramidal neurons. Journal de Physiologie, 576, 191–196.CrossRef Andrasfalvy, B. K., & Mody, I. (2006). Differences between the scaling of miniature IPSCs and EPSCs recorded in the dendrites of CA1 mouse pyramidal neurons. Journal de Physiologie, 576, 191–196.CrossRef
go back to reference Araki, I., & De Groat, W. C. (1996). Unitary excitatory synaptic currents in preganglionic neurons mediated by two distinct groups of interneurons in neonatal rat sacral parasympathetic nucleus. Journal of Neurophysiology, 76, 215–226.PubMed Araki, I., & De Groat, W. C. (1996). Unitary excitatory synaptic currents in preganglionic neurons mediated by two distinct groups of interneurons in neonatal rat sacral parasympathetic nucleus. Journal of Neurophysiology, 76, 215–226.PubMed
go back to reference Arrigoni, E., & Greene, R. W. (2004). Schaffer collateral and perforant path inputs activate different subtypes of NMDA receptors on the same CA1 pyramidal cell. British Journal of Pharmacology, 142, 317–322.PubMedCrossRef Arrigoni, E., & Greene, R. W. (2004). Schaffer collateral and perforant path inputs activate different subtypes of NMDA receptors on the same CA1 pyramidal cell. British Journal of Pharmacology, 142, 317–322.PubMedCrossRef
go back to reference Ascoli, G. A. (2003). Passive dendritic integration heavily affects spiking dynamics of recurrent networks. Neural Networks, 16, 657–663.PubMedCrossRef Ascoli, G. A. (2003). Passive dendritic integration heavily affects spiking dynamics of recurrent networks. Neural Networks, 16, 657–663.PubMedCrossRef
go back to reference Baker, J. L., Perez-Rosello, T., Migliore, M., Barrionuevo, G.,& Ascoli, G. A. (2010). A computer model of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells. J Comput Neurosci Baker, J. L., Perez-Rosello, T., Migliore, M., Barrionuevo, G.,& Ascoli, G. A. (2010). A computer model of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells. J Comput Neurosci
go back to reference Berzhanskaya, J., Urban, N. N., & Barrionuevo, G. (1998). Electrophysiological and pharmacological characterization of the direct perforant path input to hippocampal area CA3. Journal of Neurophysiology, 79, 2111–2118.PubMed Berzhanskaya, J., Urban, N. N., & Barrionuevo, G. (1998). Electrophysiological and pharmacological characterization of the direct perforant path input to hippocampal area CA3. Journal of Neurophysiology, 79, 2111–2118.PubMed
go back to reference Blackstad, T. W., Brink, K., Hem, J., & Jeune, B. (1970). Distribution of hippocampal mossy fibers in the rat. An experimental study with silver impregnation methods. The Journal of Comparative Neurology, 138, 433–449.PubMedCrossRef Blackstad, T. W., Brink, K., Hem, J., & Jeune, B. (1970). Distribution of hippocampal mossy fibers in the rat. An experimental study with silver impregnation methods. The Journal of Comparative Neurology, 138, 433–449.PubMedCrossRef
go back to reference Bloodgood, B. L., & Sabatini, B. L. (2007). Nonlinear regulation of unitary synaptic signals by CaV2.3 voltage-sensitive calcium channels located in dendritic spines. Neuron, 53, 249–260.PubMedCrossRef Bloodgood, B. L., & Sabatini, B. L. (2007). Nonlinear regulation of unitary synaptic signals by CaV2.3 voltage-sensitive calcium channels located in dendritic spines. Neuron, 53, 249–260.PubMedCrossRef
go back to reference Buckmaster, P. S., & Amaral, D. G. (2001). Intracellular recording and labeling of mossy cells and proximal CA3 pyramidal cells in macaque monkeys. The Journal of Comparative Neurology, 430, 264–281.PubMedCrossRef Buckmaster, P. S., & Amaral, D. G. (2001). Intracellular recording and labeling of mossy cells and proximal CA3 pyramidal cells in macaque monkeys. The Journal of Comparative Neurology, 430, 264–281.PubMedCrossRef
go back to reference Chen, N., Luo, T., & Raymond, L. A. (1999). Subtype-dependence of NMDA receptor channel open probability. The Journal of Neuroscience, 19, 6844–6854.PubMed Chen, N., Luo, T., & Raymond, L. A. (1999). Subtype-dependence of NMDA receptor channel open probability. The Journal of Neuroscience, 19, 6844–6854.PubMed
go back to reference Chitwood, R. A., Hubbard, A., & Jaffe, D. B. (1999). Passive electrotonic properties of rat hippocampal CA3 interneurones. Journal de Physiologie, 515, 743–756.CrossRef Chitwood, R. A., Hubbard, A., & Jaffe, D. B. (1999). Passive electrotonic properties of rat hippocampal CA3 interneurones. Journal de Physiologie, 515, 743–756.CrossRef
go back to reference Claiborne, B. J., Amaral, D. G., & Cowan, W. M. (1986). A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus. The Journal of Comparative Neurology, 246, 435–458.PubMedCrossRef Claiborne, B. J., Amaral, D. G., & Cowan, W. M. (1986). A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus. The Journal of Comparative Neurology, 246, 435–458.PubMedCrossRef
go back to reference Coultrap, S. J., Nixon, K. M., Alvestad, R. M., Valenzuela, C. F., & Browning, M. D. (2005). Differential expression of NMDA receptor subunits and splice variants among the CA1, CA3 and dentate gyrus of the adult rat. Brain Research. Molecular Brain Research, 135, 104–111.PubMedCrossRef Coultrap, S. J., Nixon, K. M., Alvestad, R. M., Valenzuela, C. F., & Browning, M. D. (2005). Differential expression of NMDA receptor subunits and splice variants among the CA1, CA3 and dentate gyrus of the adult rat. Brain Research. Molecular Brain Research, 135, 104–111.PubMedCrossRef
go back to reference Csicsvari, J., Hirase, H., Mamiya, A., & Buzsaki, G. (2000). Ensemble patterns of hippocampal CA3-CA1 neurons during sharp wave-associated population events. Neuron, 28, 585–594.PubMedCrossRef Csicsvari, J., Hirase, H., Mamiya, A., & Buzsaki, G. (2000). Ensemble patterns of hippocampal CA3-CA1 neurons during sharp wave-associated population events. Neuron, 28, 585–594.PubMedCrossRef
go back to reference de la Prida, L. M., Huberfeld, G., Cohen, I., & Miles, R. (2006). Threshold behavior in the initiation of hippocampal population bursts. Neuron, 49, 131–142.PubMedCrossRef de la Prida, L. M., Huberfeld, G., Cohen, I., & Miles, R. (2006). Threshold behavior in the initiation of hippocampal population bursts. Neuron, 49, 131–142.PubMedCrossRef
go back to reference Debanne, D., Gahwiler, B. H., & Thompson, S. M. (1998). Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. Journal de Physiologie, 507, 237–247.CrossRef Debanne, D., Gahwiler, B. H., & Thompson, S. M. (1998). Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. Journal de Physiologie, 507, 237–247.CrossRef
go back to reference Dobrunz, L. E., Huang, E. P., & Stevens, C. F. (1997). Very short-term plasticity in hippocampal synapses. Proceedings of the National Academy of Sciences of the United States of America, 94, 14843–14847.PubMedCrossRef Dobrunz, L. E., Huang, E. P., & Stevens, C. F. (1997). Very short-term plasticity in hippocampal synapses. Proceedings of the National Academy of Sciences of the United States of America, 94, 14843–14847.PubMedCrossRef
go back to reference Dudman, J. T., Tsay, D., & Siegelbaum, S. A. (2007). A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity. Neuron, 56, 866–879.PubMedCrossRef Dudman, J. T., Tsay, D., & Siegelbaum, S. A. (2007). A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity. Neuron, 56, 866–879.PubMedCrossRef
go back to reference Feldmeyer, D., Lubke, J., Silver, R. A., & Sakmann, B. (2002). Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. Journal de Physiologie, 538, 803–822.CrossRef Feldmeyer, D., Lubke, J., Silver, R. A., & Sakmann, B. (2002). Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. Journal de Physiologie, 538, 803–822.CrossRef
go back to reference Fernandez de Sevilla, D., Fuenzalida, M., Porto Pazos, A. B., & Buno, W. (2007). Selective shunting of the NMDA EPSP component by the slow afterhyperpolarization in rat CA1 pyramidal neurons. Journal of Neurophysiology, 97, 3242–3255.PubMedCrossRef Fernandez de Sevilla, D., Fuenzalida, M., Porto Pazos, A. B., & Buno, W. (2007). Selective shunting of the NMDA EPSP component by the slow afterhyperpolarization in rat CA1 pyramidal neurons. Journal of Neurophysiology, 97, 3242–3255.PubMedCrossRef
go back to reference Halavi, M., Polavaram, S., Donohue, D. E., Hamilton, G., Hoyt, J., Smith, K. P., et al. (2008). NeuroMorpho.Org implementation of digital neuroscience: dense coverage and integration with the NIF. Neuroinformatics, 6, 241–252.PubMedCrossRef Halavi, M., Polavaram, S., Donohue, D. E., Hamilton, G., Hoyt, J., Smith, K. P., et al. (2008). NeuroMorpho.Org implementation of digital neuroscience: dense coverage and integration with the NIF. Neuroinformatics, 6, 241–252.PubMedCrossRef
go back to reference Hemond, P., Epstein, D., Boley, A., Migliore, M., Ascoli, G. A., & Jaffe, D. B. (2008). Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b. Hippocampus, 18, 411–424.PubMedCrossRef Hemond, P., Epstein, D., Boley, A., Migliore, M., Ascoli, G. A., & Jaffe, D. B. (2008). Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b. Hippocampus, 18, 411–424.PubMedCrossRef
go back to reference Hemond, P., Migliore, M., Ascoli, G. A., & Jaffe, D. B. (2009). The membrane response of hippocampal CA3b pyramidal neurons near rest: heterogeneity of passive properties and the contribution of hyperpolarization-activated currents. Neuroscience, 160, 359–370.PubMedCrossRef Hemond, P., Migliore, M., Ascoli, G. A., & Jaffe, D. B. (2009). The membrane response of hippocampal CA3b pyramidal neurons near rest: heterogeneity of passive properties and the contribution of hyperpolarization-activated currents. Neuroscience, 160, 359–370.PubMedCrossRef
go back to reference Henze, D. A., Cameron, W. E., & Barrionuevo, G. (1996). Dendritic morphology and its effects on the amplitude and rise-time of synaptic signals in hippocampal CA3 pyramidal cells. The Journal of Comparative Neurology, 369, 331–344.PubMedCrossRef Henze, D. A., Cameron, W. E., & Barrionuevo, G. (1996). Dendritic morphology and its effects on the amplitude and rise-time of synaptic signals in hippocampal CA3 pyramidal cells. The Journal of Comparative Neurology, 369, 331–344.PubMedCrossRef
go back to reference Hoffman, D. A., Magee, J. C., Colbert, C. M., & Johnston, D. (1997). K + channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature, 387, 869–875.PubMedCrossRef Hoffman, D. A., Magee, J. C., Colbert, C. M., & Johnston, D. (1997). K + channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature, 387, 869–875.PubMedCrossRef
go back to reference Iansek, R., & Redman, S. J. (1973). The amplitude, time course and charge of unitary excitatory post-synaptic potentials evoked in spinal motoneurone dendrites. Journal de Physiologie, 234, 665–688. Iansek, R., & Redman, S. J. (1973). The amplitude, time course and charge of unitary excitatory post-synaptic potentials evoked in spinal motoneurone dendrites. Journal de Physiologie, 234, 665–688.
go back to reference Ishizuka, N., Cowan, M., & Amaral, D. G. (1995). A quantitative analysis of the dendritic organization of pyramidal cell in the rat hippocampus. The Journal of Comparative Neurology, 362, 17–45.PubMedCrossRef Ishizuka, N., Cowan, M., & Amaral, D. G. (1995). A quantitative analysis of the dendritic organization of pyramidal cell in the rat hippocampus. The Journal of Comparative Neurology, 362, 17–45.PubMedCrossRef
go back to reference Ishizuka, N., Weber, J., & Amaral, D. G. (1990). Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. The Journal of Comparative Neurology, 295, 580–623.PubMedCrossRef Ishizuka, N., Weber, J., & Amaral, D. G. (1990). Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. The Journal of Comparative Neurology, 295, 580–623.PubMedCrossRef
go back to reference Ito, I., Kawakami, R., Sakimura, K., Mishina, M., & Sugiyama, H. (2000). Input-specific targeting of NMDA receptor subtypes at mouse hippocampal CA3 pyramidal neuron synapses. Neuropharmacology, 39, 943–951.PubMedCrossRef Ito, I., Kawakami, R., Sakimura, K., Mishina, M., & Sugiyama, H. (2000). Input-specific targeting of NMDA receptor subtypes at mouse hippocampal CA3 pyramidal neuron synapses. Neuropharmacology, 39, 943–951.PubMedCrossRef
go back to reference Jack, J. J., Miller, S., Porter, R., & Redman, S. J. (1971). The time course of minimal excitory post-synaptic potentials evoked in spinal motoneurones by group Ia afferent fibres. Journal de Physiologie, 215, 353–380. Jack, J. J., Miller, S., Porter, R., & Redman, S. J. (1971). The time course of minimal excitory post-synaptic potentials evoked in spinal motoneurones by group Ia afferent fibres. Journal de Physiologie, 215, 353–380.
go back to reference Jaffe, D. B., & Carnevale, N. T. (1999). Passive normalization of synaptic integration influenced by dendritic architecture. Journal of Neurophysiology, 82, 3268–3285.PubMed Jaffe, D. B., & Carnevale, N. T. (1999). Passive normalization of synaptic integration influenced by dendritic architecture. Journal of Neurophysiology, 82, 3268–3285.PubMed
go back to reference Jarsky, T., Roxin, A., Kath, W. L., & Spruston, N. (2005). Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nature Neuroscience, 8, 1667–1676.PubMedCrossRef Jarsky, T., Roxin, A., Kath, W. L., & Spruston, N. (2005). Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nature Neuroscience, 8, 1667–1676.PubMedCrossRef
go back to reference Johnston, D., & Brown, T. H. (1983). Interpretation of voltage-clamp measurements in hippocampal neurons. Journal of Neurophysiology, 50, 464–486.PubMed Johnston, D., & Brown, T. H. (1983). Interpretation of voltage-clamp measurements in hippocampal neurons. Journal of Neurophysiology, 50, 464–486.PubMed
go back to reference Johnston, D., & Narayanan, R. (2008). Active dendrites: colorful wings of the mysterious butterflies. Trends in Neurosciences, 31, 309–316.PubMedCrossRef Johnston, D., & Narayanan, R. (2008). Active dendrites: colorful wings of the mysterious butterflies. Trends in Neurosciences, 31, 309–316.PubMedCrossRef
go back to reference Jonas, P., Major, G., & Sakmann, B. (1993). Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. Journal de Physiologie, 472, 615–663. Jonas, P., Major, G., & Sakmann, B. (1993). Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. Journal de Physiologie, 472, 615–663.
go back to reference Kesner, R. P. (2007). Behavioral functions of the CA3 subregion of the hippocampus. Learning & Memory, 14, 771–781.CrossRef Kesner, R. P. (2007). Behavioral functions of the CA3 subregion of the hippocampus. Learning & Memory, 14, 771–781.CrossRef
go back to reference Lawrence, J. J., Grinspan, Z. M., & McBain, C. J. (2004). Quantal transmission at mossy fibre targets in the CA3 region of the rat hippocampus. Journal de Physiologie, 554, 175–193.CrossRef Lawrence, J. J., Grinspan, Z. M., & McBain, C. J. (2004). Quantal transmission at mossy fibre targets in the CA3 region of the rat hippocampus. Journal de Physiologie, 554, 175–193.CrossRef
go back to reference Lazarewicz, M. T., Migliore, M., & Ascoli, G. A. (2002). A new bursting model of CA3 pyramidal cell physiology suggests multiple locations for spike initiation. Biosystems, 67, 129–137.PubMedCrossRef Lazarewicz, M. T., Migliore, M., & Ascoli, G. A. (2002). A new bursting model of CA3 pyramidal cell physiology suggests multiple locations for spike initiation. Biosystems, 67, 129–137.PubMedCrossRef
go back to reference Leutgeb, J. K., Leutgeb, S., Moser, M. B., & Moser, E. I. (2007). Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science, 315, 961–966.PubMedCrossRef Leutgeb, J. K., Leutgeb, S., Moser, M. B., & Moser, E. I. (2007). Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science, 315, 961–966.PubMedCrossRef
go back to reference Li, X. G., Somogyi, P., Ylinen, A., & Buzsaki, G. (1994). The hippocampal CA3 network: an in vivo intracellular labeling study. The Journal of Comparative Neurology, 339, 181–208.PubMedCrossRef Li, X. G., Somogyi, P., Ylinen, A., & Buzsaki, G. (1994). The hippocampal CA3 network: an in vivo intracellular labeling study. The Journal of Comparative Neurology, 339, 181–208.PubMedCrossRef
go back to reference Magee, J. C. (1998). Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. The Journal of Neuroscience, 18, 7613–7624.PubMed Magee, J. C. (1998). Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. The Journal of Neuroscience, 18, 7613–7624.PubMed
go back to reference Magee, J. C., & Cook, E. P. (2000). Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nature Neuroscience, 3, 895–903.PubMedCrossRef Magee, J. C., & Cook, E. P. (2000). Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nature Neuroscience, 3, 895–903.PubMedCrossRef
go back to reference Magee, J. C., & Johnston, D. (1995). Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science, 268, 301–304.PubMedCrossRef Magee, J. C., & Johnston, D. (1995). Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science, 268, 301–304.PubMedCrossRef
go back to reference Major, G., Larkman, A. U., Jonas, P., Sakmann, B., & Jack, J. J. (1994). Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. The Journal of Neuroscience, 14, 4613–4638.PubMed Major, G., Larkman, A. U., Jonas, P., Sakmann, B., & Jack, J. J. (1994). Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. The Journal of Neuroscience, 14, 4613–4638.PubMed
go back to reference Martinez, C. O., Do, V. H., Martinez, J. L., Jr., & Derrick, B. E. (2002). Associative long-term potentiation (LTP) among extrinsic afferents of the hippocampal CA3 region in vivo. Brain Research, 940, 86–94.PubMedCrossRef Martinez, C. O., Do, V. H., Martinez, J. L., Jr., & Derrick, B. E. (2002). Associative long-term potentiation (LTP) among extrinsic afferents of the hippocampal CA3 region in vivo. Brain Research, 940, 86–94.PubMedCrossRef
go back to reference McBain, C., & Dingledine, R. (1992). Dual-component miniature excitatory synaptic currents in rat hippocampal CA3 pyramidal neurons. Journal of Neurophysiology, 68, 16–27.PubMed McBain, C., & Dingledine, R. (1992). Dual-component miniature excitatory synaptic currents in rat hippocampal CA3 pyramidal neurons. Journal of Neurophysiology, 68, 16–27.PubMed
go back to reference Miles, R., & Wong, R. K. (1986). Excitatory synaptic interactions between CA3 neurones in the guinea-pig hippocampus. Journal de Physiologie, 373, 397–418. Miles, R., & Wong, R. K. (1986). Excitatory synaptic interactions between CA3 neurones in the guinea-pig hippocampus. Journal de Physiologie, 373, 397–418.
go back to reference Mitterdorfer, J., & Bean, B. P. (2002). Potassium currents during the action potential of hippocampal CA3 neurons. The Journal of Neuroscience, 22, 10106–10115.PubMed Mitterdorfer, J., & Bean, B. P. (2002). Potassium currents during the action potential of hippocampal CA3 neurons. The Journal of Neuroscience, 22, 10106–10115.PubMed
go back to reference Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B., & Seeburg, P. H. (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron, 12, 529–540.PubMedCrossRef Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B., & Seeburg, P. H. (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron, 12, 529–540.PubMedCrossRef
go back to reference Moriyoshi, K., Masu, M., Ishii, T., Shigemoto, R., Mizuno, N., & Nakanishi, S. (1991). Molecular cloning and characterization of the rat NMDA receptor. Nature, 354, 31–37.PubMedCrossRef Moriyoshi, K., Masu, M., Ishii, T., Shigemoto, R., Mizuno, N., & Nakanishi, S. (1991). Molecular cloning and characterization of the rat NMDA receptor. Nature, 354, 31–37.PubMedCrossRef
go back to reference Nevian, T., Larkum, M. E., Polsky, A., & Schiller, J. (2007). Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nature Neuroscience, 10, 206–214.PubMedCrossRef Nevian, T., Larkum, M. E., Polsky, A., & Schiller, J. (2007). Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nature Neuroscience, 10, 206–214.PubMedCrossRef
go back to reference Ngo-Anh, T. J., Bloodgood, B. L., Lin, M., Sabatini, B. L., Maylie, J., & Adelman, J. P. (2005). SK channels and NMDA receptors form a Ca2 + −mediated feedback loop in dendritic spines. Nature Neuroscience, 8, 642–649.PubMedCrossRef Ngo-Anh, T. J., Bloodgood, B. L., Lin, M., Sabatini, B. L., Maylie, J., & Adelman, J. P. (2005). SK channels and NMDA receptors form a Ca2 + −mediated feedback loop in dendritic spines. Nature Neuroscience, 8, 642–649.PubMedCrossRef
go back to reference Nicholson, D. A., Trana, R., Katz, Y., Kath, W. L., Spruston, N., & Geinisman, Y. (2006). Distance-dependent differences in synapse number and AMPA receptor expression in hippocampal CA1 pyramidal neurons. Neuron, 50, 431–442.PubMedCrossRef Nicholson, D. A., Trana, R., Katz, Y., Kath, W. L., Spruston, N., & Geinisman, Y. (2006). Distance-dependent differences in synapse number and AMPA receptor expression in hippocampal CA1 pyramidal neurons. Neuron, 50, 431–442.PubMedCrossRef
go back to reference Oren, I., Mann, E. O., Paulsen, O., & Hajos, N. (2006). Synaptic currents in anatomically identified CA3 neurons during hippocampal gamma oscillations in vitro. The Journal of Neuroscience, 26, 9923–9934.PubMedCrossRef Oren, I., Mann, E. O., Paulsen, O., & Hajos, N. (2006). Synaptic currents in anatomically identified CA3 neurons during hippocampal gamma oscillations in vitro. The Journal of Neuroscience, 26, 9923–9934.PubMedCrossRef
go back to reference Otmakhova, N. A., & Lisman, J. E. (2004). Contribution of Ih and GABAB to synaptically induced afterhyperpolarizations in CA1: a brake on the NMDA response. Journal of Neurophysiology, 92, 2027–2039.PubMedCrossRef Otmakhova, N. A., & Lisman, J. E. (2004). Contribution of Ih and GABAB to synaptically induced afterhyperpolarizations in CA1: a brake on the NMDA response. Journal of Neurophysiology, 92, 2027–2039.PubMedCrossRef
go back to reference Otmakhova, N. A., Otmakhov, N., & Lisman, J. E. (2002). Pathway-specific properties of AMPA and NMDA-mediated transmission in CA1 hippocampal pyramidal cells. The Journal of Neuroscience, 22, 1199–1207.PubMed Otmakhova, N. A., Otmakhov, N., & Lisman, J. E. (2002). Pathway-specific properties of AMPA and NMDA-mediated transmission in CA1 hippocampal pyramidal cells. The Journal of Neuroscience, 22, 1199–1207.PubMed
go back to reference Perkins, K. L., & Wong, R. K. (1995). Intracellular QX-314 blocks the hyperpolarization-activated inward current Iq in hippocampal CA1 pyramidal cells. Journal of Neurophysiology, 73, 911–915.PubMed Perkins, K. L., & Wong, R. K. (1995). Intracellular QX-314 blocks the hyperpolarization-activated inward current Iq in hippocampal CA1 pyramidal cells. Journal of Neurophysiology, 73, 911–915.PubMed
go back to reference Raastad, M. (1995). Extracellular activation of unitary excitatory synapses between hippocampal CA3 and CA1 pyramidal cells. The European Journal of Neuroscience, 7, 1882–1888.PubMedCrossRef Raastad, M. (1995). Extracellular activation of unitary excitatory synapses between hippocampal CA3 and CA1 pyramidal cells. The European Journal of Neuroscience, 7, 1882–1888.PubMedCrossRef
go back to reference Rall, W. (1967). Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. Journal of Neurophysiology, 30, 1138–1168.PubMed Rall, W. (1967). Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. Journal of Neurophysiology, 30, 1138–1168.PubMed
go back to reference Richardson, M. J. E., & Silberberg, G. (2008). Measurement and analysis of postsynaptic potentials using a novel voltage-deconvolution method. Journal of Neurophysiology, 99, 1020–1031.PubMedCrossRef Richardson, M. J. E., & Silberberg, G. (2008). Measurement and analysis of postsynaptic potentials using a novel voltage-deconvolution method. Journal of Neurophysiology, 99, 1020–1031.PubMedCrossRef
go back to reference Rolls, E. T. (2007). An attractor network in the hippocampus: theory and neurophysiology. Learning & Memory, 14, 714–731.CrossRef Rolls, E. T. (2007). An attractor network in the hippocampus: theory and neurophysiology. Learning & Memory, 14, 714–731.CrossRef
go back to reference Smith, M. A., Ellis-Davies, G. C., & Magee, J. C. (2003). Mechanism of the distance-dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons. Journal de Physiologie, 548, 245–258.CrossRef Smith, M. A., Ellis-Davies, G. C., & Magee, J. C. (2003). Mechanism of the distance-dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons. Journal de Physiologie, 548, 245–258.CrossRef
go back to reference Sokolov, M. V., Rossokhin, A. V., MK, A., Gasparini, S., Berretta, N., Cherubini, E., et al. (2003). Associative mossy fibre LTP induced by pairing presynaptic stimulation with postsynaptic hyperpolarization of CA3 neurons in rat hippocampal slice. The European Journal of Neuroscience, 17, 1425–1437.PubMedCrossRef Sokolov, M. V., Rossokhin, A. V., MK, A., Gasparini, S., Berretta, N., Cherubini, E., et al. (2003). Associative mossy fibre LTP induced by pairing presynaptic stimulation with postsynaptic hyperpolarization of CA3 neurons in rat hippocampal slice. The European Journal of Neuroscience, 17, 1425–1437.PubMedCrossRef
go back to reference Spruston, N., Jaffe, D. B., Williams, S. H., & Johnston, D. (1993). Voltage- and space-clamp errors associated with the measurement of electrotonically remote synaptic events. Journal of Neurophysiology, 70, 781–802.PubMed Spruston, N., Jaffe, D. B., Williams, S. H., & Johnston, D. (1993). Voltage- and space-clamp errors associated with the measurement of electrotonically remote synaptic events. Journal of Neurophysiology, 70, 781–802.PubMed
go back to reference Spruston, N., & Johnston, D. (1992). Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. Journal of Neurophysiology, 67, 508–529.PubMed Spruston, N., & Johnston, D. (1992). Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. Journal of Neurophysiology, 67, 508–529.PubMed
go back to reference Spruston, N., Jonas, P., & Sakmann, B. (1995). Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. Journal de Physiologie, 482, 325–352. Spruston, N., Jonas, P., & Sakmann, B. (1995). Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. Journal de Physiologie, 482, 325–352.
go back to reference Steward, O. (1976). Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat. The Journal of Comparative Neurology, 167, 285–314.PubMedCrossRef Steward, O. (1976). Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat. The Journal of Comparative Neurology, 167, 285–314.PubMedCrossRef
go back to reference Stuart, G., & Sakmann, B. (1995). Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons. Neuron, 15, 1065–1076.PubMedCrossRef Stuart, G., & Sakmann, B. (1995). Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons. Neuron, 15, 1065–1076.PubMedCrossRef
go back to reference Talbot, M. J., & Sayer, R. J. (1996). Intracellular QX-314 inhibits calcium currents in hippocampal CA1 pyramidal neurons. Journal of Neurophysiology, 76, 2120–2124.PubMed Talbot, M. J., & Sayer, R. J. (1996). Intracellular QX-314 inhibits calcium currents in hippocampal CA1 pyramidal neurons. Journal of Neurophysiology, 76, 2120–2124.PubMed
go back to reference Traub, R. D., & Wong, R. K. (1982). Cellular mechanism of neuronal synchronization in epilepsy. Science, 216, 745–747.PubMedCrossRef Traub, R. D., & Wong, R. K. (1982). Cellular mechanism of neuronal synchronization in epilepsy. Science, 216, 745–747.PubMedCrossRef
go back to reference Urban, N. N., & Barrionuevo, G. (1998). Active summation of excitatory postsynaptic potentials in hippocampal CA3 pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America, 95, 11450–11455.PubMedCrossRef Urban, N. N., & Barrionuevo, G. (1998). Active summation of excitatory postsynaptic potentials in hippocampal CA3 pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America, 95, 11450–11455.PubMedCrossRef
go back to reference Urban, N. N., Henze, D. A., & Barrionuevo, G. (1998). Amplification of perforant-path EPSPs in CA3 pyramidal cells by LVA calcium and sodium channels. Journal of Neurophysiology, 80, 1558–1561.PubMed Urban, N. N., Henze, D. A., & Barrionuevo, G. (1998). Amplification of perforant-path EPSPs in CA3 pyramidal cells by LVA calcium and sodium channels. Journal of Neurophysiology, 80, 1558–1561.PubMed
go back to reference Vicini, S., Wang, J. F., Li, J. H., Zhu, W. J., Wang, Y. H., Luo, J. H., et al. (1998). Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors. Journal of Neurophysiology, 79, 555–566.PubMed Vicini, S., Wang, J. F., Li, J. H., Zhu, W. J., Wang, Y. H., Luo, J. H., et al. (1998). Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors. Journal of Neurophysiology, 79, 555–566.PubMed
go back to reference Weisskopf, M. G., & Nicoll, R. A. (1995). Presynaptic changes during mossy fibre LTP revealed by NMDA receptor-mediated synaptic responses. Nature, 376, 256–259.PubMedCrossRef Weisskopf, M. G., & Nicoll, R. A. (1995). Presynaptic changes during mossy fibre LTP revealed by NMDA receptor-mediated synaptic responses. Nature, 376, 256–259.PubMedCrossRef
go back to reference Williams, S. H., & Johnston, D. (1991). Kinetic properties of two anatomically distinct excitatory synapses in hippocampal CA3 pyramidal neurons. Journal of Neurophysiology, 66, 1010–1020.PubMed Williams, S. H., & Johnston, D. (1991). Kinetic properties of two anatomically distinct excitatory synapses in hippocampal CA3 pyramidal neurons. Journal of Neurophysiology, 66, 1010–1020.PubMed
go back to reference Williams, S. R., & Mitchell, S. J. (2008). Direct measurement of somatic voltage clamp errors in central neurons. Nature Neuroscience, 11, 790–798.PubMedCrossRef Williams, S. R., & Mitchell, S. J. (2008). Direct measurement of somatic voltage clamp errors in central neurons. Nature Neuroscience, 11, 790–798.PubMedCrossRef
go back to reference Williams, S. R., & Stuart, G. J. (2000). Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. Journal of Neurophysiology, 83, 3177–3182.PubMed Williams, S. R., & Stuart, G. J. (2000). Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. Journal of Neurophysiology, 83, 3177–3182.PubMed
go back to reference Williams, S. R., & Stuart, G. J. (2003). Role of dendritic synapse location in the control of action potential output. Trends in Neurosciences, 26, 147–154.PubMedCrossRef Williams, S. R., & Stuart, G. J. (2003). Role of dendritic synapse location in the control of action potential output. Trends in Neurosciences, 26, 147–154.PubMedCrossRef
go back to reference Witter, M. P., & Amaral, D. G. (1991). Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex. The Journal of Comparative Neurology, 307, 437–459.PubMedCrossRef Witter, M. P., & Amaral, D. G. (1991). Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex. The Journal of Comparative Neurology, 307, 437–459.PubMedCrossRef
go back to reference Wittner, L., & Miles, R. (2007). Factors defining a pacemaker region for synchrony in the hippocampus. Journal de Physiologie, 584, 867–883.CrossRef Wittner, L., & Miles, R. (2007). Factors defining a pacemaker region for synchrony in the hippocampus. Journal de Physiologie, 584, 867–883.CrossRef
go back to reference Wong, R. K., Prince, D. A., & Basbaum, A. I. (1979). Intradendritic recordings from hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 76, 986–990.PubMedCrossRef Wong, R. K., Prince, D. A., & Basbaum, A. I. (1979). Intradendritic recordings from hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 76, 986–990.PubMedCrossRef
go back to reference Yeckel, M. F., & Berger, T. W. (1990). Feedforward excitation of the hippocampus by afferents from the entorhinal cortex: redefinition of the role of the trisynaptic pathway. Proceedings of the National Academy of Sciences of the United States of America, 87, 5832–5836.PubMedCrossRef Yeckel, M. F., & Berger, T. W. (1990). Feedforward excitation of the hippocampus by afferents from the entorhinal cortex: redefinition of the role of the trisynaptic pathway. Proceedings of the National Academy of Sciences of the United States of America, 87, 5832–5836.PubMedCrossRef
Metadata
Title
Passive and active shaping of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells
Authors
Tamara Perez-Rosello
John L. Baker
Michele Ferrante
Satish Iyengar
Giorgio A. Ascoli
Germán Barrionuevo
Publication date
01-10-2011
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 2/2011
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-010-0303-y

Other articles of this Issue 2/2011

Journal of Computational Neuroscience 2/2011 Go to the issue

Premium Partner