Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

14-09-2022

Path Planning of Mobile Robot Using Modified DAYKUN-BIP Virtual Target Displacement Method in Static Environments

Authors: Saroj Kumar, Sujit S. Dadas, Dayal R. Parhi

Published in: Wireless Personal Communications

Login to get access
share
SHARE

Abstract

Mobile robot applications can be found in various fields like mining, military operations, warehouses, underwater exploration, production lines, etc. DAYKUN-BIP method is a novel navigational approach for smooth and trouble-free robot movement that has been proposed in this paper. DAYKUN-BIP virtual target displacement (DVTD) method is initiated when a robot cannot discover a viable route to move. When the robot's sensors detect any potential barrier, several virtual goals are created surrounding the real goal. The safest path is then calculated by assigning appropriate weightage to each goal line using selected factors and visualising the most viable route. The v-REP software platform is used for simulation work, backed with real-time laboratory experiments. Positive coordination is noticed between the simulation and experimental results, as the deviation is less than 5%. Finally, the robot achieves the goal in each workspace without any conflict. Further, the proposed technique is compared with existing technique and average improvements of 12.76% and 15.45% are observed in path length and time consumption respectively. In other words, it can be said that the proposed approach gives optimized path for navigation with better control.

Literature
  1. Jiang, X., Motai, Y., & Zhu, X. (2005). Predictive fuzzy logic controller for trajectory tracking of a mobile robot. In Proceedings of the 2005 IEEE midnight-summer workshop on soft computing in industrial applications, 2005. SMCia/05. (pp. 29–32). IEEE.
  2. Rekik, C., Jallouli, M., & Derbel, N. (2009). Optimal trajectory of a mobile robot by a genetic design fuzzy logic controller. In 2009 international conference on advances in computational tools for engineering applications (pp. 107–111). IEEE.
  3. Garcia, M. P., Montiel, O., Castillo, O., Sepulveda, R., & Melin, P. (2009). Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation. Applied Soft Computing, 9(3), 1102–1110.View Article
  4. Song, Q., & Liu, L. (2012). Mobile robot path planning based on dynamic fuzzy artificial potential field method. International Journal of Hybrid Information Technology, 5(4), 85–94.
  5. Purian, F. K., & Sadeghian, E. (2013). Mobile robots path planning using ant colony optimization and Fuzzy Logic algorithms in unknown dynamic environments. In 2013 international conference on control, automation, robotics and embedded systems (CARE) (pp. 1–6). IEEE.
  6. Chinag, C. H., & Ding, C. (2014). Robot navigation in dynamic environments using fuzzy logic and trajectory prediction table. In 2014 international conference on fuzzy theory and its applications (iFUZZY2014) (pp. 99–104). IEEE.
  7. Sandeep, B. S., & Supriya, P. (2016). Analysis of fuzzy rules for robot path planning. In 2016 international conference on advances in computing, communications and informatics (ICACCI) (pp. 309–314). IEEE.
  8. Fakoor, M., Kosari, A., & Jafarzadeh, M. (2016). Humanoid robot path planning with fuzzy Markov decision processes. Journal of applied research and technology, 14(5), 300–310.View Article
  9. Sun, P., & Yu, Z. (2017). Tracking control for a cushion robot based on fuzzy path planning with safe angular velocity. IEEE/CAA Journal of Automatica Sinica, 4(4), 610–619.MathSciNetView Article
  10. Afakh, M. L., Masudi, M. I., Ardilla, F., Wibowo, I. K., & Marta, B. S. (2018, July). Bicycle path planning on omnidirectional mobile robot using fuzzy logic controller. In 2018 10th international conference on information technology and electrical engineering (ICITEE) (pp. 237–241). IEEE.
  11. Pandey, A., Kumar, S., Pandey, K. K., & Parhi, D. R. (2016). Mobile robot navigation in unknown static environments using ANFIS controller. Perspectives in Science, 8, 421–423.View Article
  12. Kashyap, A. K., Parhi, D. R., & Kumar, S. (2020). Dynamic stabilization of NAO humanoid robot based on whole-body control with simulated annealing. International Journal of Humanoid Robotics, 17(03), 2050014.View Article
  13. Kumar, S., Parhi, D. R., Muni, M. K., & Pandey, K. K. (2020). Optimal path search and control of mobile robot using hybridized sine-cosine algorithm and ant colony optimization technique. Industrial Robot: The International Journal of Robotics Research and Application., 47(4), 535–545.View Article
  14. Muni, M. K., Parhi, D. R., Kumar, P. B., & Kumar, S. (2021). Motion control of multiple humanoids using a hybridized prim’s algorithm-fuzzy controller. Soft Computing, 25(2), 1159–1180.View Article
  15. Kumar, S., Pandey, K. K., Muni, M. K., & Parhi, D. R. (2020). Path planning of the mobile robot using fuzzified advanced ant colony optimization. In Innovative product design and intelligent manufacturing systems (pp. 1043–1052). Springer, Singapore.
  16. Kumar, S., Parhi, D. R., Pandey, K. K., & Muni, M. K. (2021). Hybrid IWD-GA: An approach for path optimization and control of multiple mobile robot in obscure static and dynamic environments. Robotica, 39(11), 2033–2060.View Article
  17. Kumar, S., Parhi, D. R., Kashyap, A. K., & Muni, M. K. (2021). Static and dynamic path optimization of multiple mobile robot using hybridized fuzzy logic-whale optimization algorithm. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(21), 5718–5735.
  18. Kumar, S., Muni, M. K., Pandey, K. K., Chhotray, A., & Parhi, D. R. (2019). Path planning and control of mobile robots using modified Tabu search algorithm in complex environment. In International conference on artificial intelligence in manufacturing & renewable energy (ICAIMRE).
  19. Muni, M. K., Parhi, D. R., Kumar, P., Pandey, K. K., Kumar, S., & Chhotray, A. (2019). Sugeno fuzzy logic analysis: navigation of multiple humanoids in complex environments. In International conference on artificial intelligence in manufacturing & renewable energy (ICAIMRE).
  20. Muni, M. K., Kumar, S., Parhi, D. R., & Pandey, K. K. (2022). Water cycle algorithm: An approach for improvement of navigational strategy of multiple humanoid robots. Robotica, 40(3), 798–816.View Article
  21. Muni, M. K., Parhi, D. R., Kumar, P. B., Sahu, C., & Kumar, S. (2022). Towards motion planning of humanoids using a fuzzy embedded neural network approach. Applied Soft Computing, 119, 108588.View Article
  22. Paital, C., Kumar, S., Muni, M. K., Parhi, D. R., & Dhal, P. R. (2021). Navigation of a wheeled mobile robotic agent using modified grey wolf optimization controller. International Journal of Intelligent Unmanned Systems.
  23. Pandey, K. K., Thakare, A. M., Kumar, S., Muni, M. K., & Parhi, D. R. (2021). Trajectory optimization of wheeled mobile robot (WMR) in the wall-type arena. In AIP conference proceedings (Vol. 2341, No. 1, p. 020028). AIP Publishing LLC.
  24. Kashyap, A. K., Parhi, D. R., Kumar, S., Pandey, A., Muni, M. K., & Ranjan Dhal, P. (2021). Safe navigation of humanoid robot in cluttered terrain using ant lion optimizer tuned RA approach. In Current advances in mechanical engineering (pp. 997–1006). Springer, Singapore.
  25. Kumar, S., Parhi, D. R., Kashyap, A. K., Muni, M. K., & Dhal, P. R. (2021). Navigational control and path optimization of mobile robot using updated sine–cosine algorithm in obscure environment. In Current advances in mechanical engineering (pp. 989–996). Springer, Singapore.
  26. Muni, M. K., Parhi, D. R., Kumar, P. B., Dhal, P. R., Kumar, S., Sahu, C., & Kashyap, A. K. (2021). Probability plot result comparison with recurrent neural network approach for path navigation of a humanoid in complex terrain. In Current advances in mechanical engineering (pp. 579–588). Springer, Singapore.
  27. Muni, M. K., Parhi, D. R., Kumar, P. B., Sahu, C., Dhal, P. R., & Kumar, S. (2021). Global path optimization of humanoid NAO in static environment using prim’s algorithm. In Intelligent systems (pp. 25–34). Springer, Singapore.
  28. Parhi, D. R., & Kumar, P. B. (2019). Smart navigation of humanoid robots using DAYKUN-BIP virtual target displacement and petri-net strategy. Robotica, 37(4), 626–640.View Article
  29. Kumar, S., & Parhi, D. (2022). Trajectory planning and control of multiple mobile robot using hybrid MKH-fuzzy logic controller. Robotica. https://​doi.​org/​10.​1017/​S026357472200069​8View Article
  30. Kumar, P., Shilpi, S., Kanungo, A., Gupta, V., & Gupta, N. K. (2022). A novel ultra wideband antenna design and parameter tuning using hybrid optimization strategy. Wireless Personal Communications, 122(2), 1129–1152.View Article
  31. Wei, L., Changwu, X., Yue, H., Liguo, C., Lining, S., & Guoqiang, F. (2019). Actual deviation correction based on weight improvement for 10-unit Dolph-Chebyshev array antennas. Journal of Ambient Intelligence and Humanized Computing, 10(5), 1713–1726.View Article
  32. Zhang, G., & Zhang, E. (2022). An improved sparrow search based intelligent navigational algorithm for local path planning of mobile robot. Journal of Ambient Intelligence and Humanized Computing, 1–13.
  33. Sombolestan, S. M., Rasooli, A., & Khodaygan, S. (2019). Optimal path-planning for mobile robots to find a hidden target in an unknown environment based on machine learning. Journal of Ambient Intelligence and Humanized Computing, 10(5), 1841–1850.View Article
  34. Eshtehardian, S. A., & Khodaygan, S. (2022). A continuous RRT*-based path planning method for non-holonomic mobile robots using B-spline curves. Journal of Ambient Intelligence and Humanized Computing, 1–10.
  35. Gul, F., Rahiman, W., Alhady, S. S., Ali, A., Mir, I., & Jalil, A. (2021). Meta-heuristic approach for solving multi-objective path planning for autonomous guided robot using PSO–GWO optimization algorithm with evolutionary programming. Journal of Ambient Intelligence and Humanized Computing, 12(7), 7873–7890.View Article
  36. Ding, H. (2020). Motion path planning of soccer training auxiliary robot based on genetic algorithm in fixed-point rotation environment. Journal of Ambient Intelligence and Humanized Computing, 11(12), 6261–6270.View Article
  37. Mohanty, P. K. (2020). An intelligent navigational strategy for mobile robots in uncertain environments using smart cuckoo search algorithm. Journal of Ambient Intelligence and Humanized Computing, 11(12), 6387–6402.View Article
  38. Jiang, W., Wu, G., Yu, L., Li, H., & Chen, W. (2019). Manipulator multi-objective motion optimization control for high voltage power cable mobile operation robot. Journal of Ambient Intelligence and Humanized Computing, 10(3), 893–905.View Article
  39. Adamu, P. I., Okagbue, H. I., & Oguntunde, P. E. (2019). Fast and optimal path planning algorithm (FAOPPA) for a mobile robot. Wireless Personal Communications, 106(2), 577–592.View Article
  40. Das, M. S., Samanta, A., Sanyal, S., & Mandal, S. (2021). Support value-based NFSMC for wheeled mobile robot path tracking in unknown environments. Wireless Personal Communications, 119(4), 2991–3011.View Article
  41. Das, M. S., Samanta, A., Sanyal, S., & Mandal, S. (2021). AKH-NFIS: Adaptive krill herd network fuzzy inference system for mobile robot navigation. Wireless Personal Communications, 120(4), 3389–3413.View Article
  42. Zhang, Y., Xiao, Y., Wang, Y., & Mosca, P. (2017). Bio-inspired patrolling scheme design in wireless and mobile sensor and robot networks. Wireless Personal Communications, 92(3), 1303–1332.View Article
  43. Agarwal, V., Tapaswi, S., & Chanak, P. (2021). A survey on path planning techniques for mobile sink in IoT-enabled wireless sensor networks. Wireless Personal Communications, 119(1), 211–238.View Article
  44. Lee, W. Y., Hur, K., Hwang, K. I., Eom, D. S., & Kim, J. O. (2012). Mobile robot navigation using wireless sensor networks without localization procedure. Wireless Personal Communications, 62(2), 257–275.View Article
  45. Gupta, V., Mittal, M., Mittal, V., & Gupta, A. (2022). An efficient AR modelling-based electrocardiogram signal analysis for health informatics. International Journal of Medical Engineering and Informatics, 14(1), 74–89.View Article
  46. Gupta, V., & Mittal, M. (2021). R-peak detection for improved analysis in health informatics. International Journal of Medical Engineering and Informatics, 13(3), 213–223.View Article
  47. Gupta, V., & Mittal, M. (2019). QRS complex detection using STFT, chaos analysis, and PCA in standard and real-time ECG databases. Journal of The Institution of Engineers (India): Series B, 100(5), 489–497.View Article
  48. Gupta, V., Mittal, M., Mittal, V., & Gupta, A. (2021). ECG signal analysis using CWT, spectrogram and autoregressive technique. Iran Journal of Computer Science, 4(4), 265–280.View Article
  49. Feng, S., Wu, C., Zhang, Y., & Oliva, G. (2017). WSN deployment and localization using a mobile agent. Wireless Personal Communications, 97(4), 4921–4931.View Article
  50. Schiøler, H., & Toftegaard, T. S. (2012). Wireless communication in mobile robotics a case for standardization. Wireless Personal Communications, 64(3), 583–596.View Article
Metadata
Title
Path Planning of Mobile Robot Using Modified DAYKUN-BIP Virtual Target Displacement Method in Static Environments
Authors
Saroj Kumar
Sujit S. Dadas
Dayal R. Parhi
Publication date
14-09-2022
Publisher
Springer US
Published in
Wireless Personal Communications
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-10043-2