Skip to main content
Top

2020 | OriginalPaper | Chapter

Paying Per-Label Attention for Multi-label Extraction from Radiology Reports

Authors : Patrick Schrempf, Hannah Watson, Shadia Mikhael, Maciej Pajak, Matúš Falis, Aneta Lisowska, Keith W. Muir, David Harris-Birtill, Alison Q. O’Neil

Published in: Interpretable and Annotation-Efficient Learning for Medical Image Computing

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Training medical image analysis models requires large amounts of expertly annotated data which is time-consuming and expensive to obtain. Images are often accompanied by free-text radiology reports which are a rich source of information. In this paper, we tackle the automated extraction of structured labels from head CT reports for imaging of suspected stroke patients, using deep learning. Firstly, we propose a set of 31 labels which correspond to radiographic findings (e.g. hyperdensity) and clinical impressions (e.g. haemorrhage) related to neurological abnormalities. Secondly, inspired by previous work, we extend existing state-of-the-art neural network models with a label-dependent attention mechanism. Using this mechanism and simple synthetic data augmentation, we are able to robustly extract many labels with a single model, classified according to the radiologist’s reporting (positive, uncertain, negative). This approach can be used in further research to effectively extract many labels from medical text.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
iCAIRD project number: 104690; University of St Andrews: CS14871.
 
Literature
1.
go back to reference Alsentzer, E., et al.: Publicly available clinical BERT embeddings. In: Proceedings of the 2nd Clinical Natural Language Processing Workshop, pp. 72–78. Association for Computational Linguistics, Minneapolis, Minnesota, USA, Jun 2019. https://doi.org/10.18653/v1/W19-1909 Alsentzer, E., et al.: Publicly available clinical BERT embeddings. In: Proceedings of the 2nd Clinical Natural Language Processing Workshop, pp. 72–78. Association for Computational Linguistics, Minneapolis, Minnesota, USA, Jun 2019. https://​doi.​org/​10.​18653/​v1/​W19-1909
2.
go back to reference Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015) Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)
3.
go back to reference Banerjee, S., Akkaya, C., Perez-Sorrosal, F., Tsioutsiouliklis, K.: Hierarchical transfer learning for multi-label text classification. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 6295–6300 (2019) Banerjee, S., Akkaya, C., Perez-Sorrosal, F., Tsioutsiouliklis, K.: Hierarchical transfer learning for multi-label text classification. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 6295–6300 (2019)
5.
go back to reference Cho, K., van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: Encoder-decoder approaches. In: Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, pp. 103–111. Association for Computational Linguistics, Doha, Qatar, October 2014.https://doi.org/10.3115/v1/W14-4012 Cho, K., van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: Encoder-decoder approaches. In: Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, pp. 103–111. Association for Computational Linguistics, Doha, Qatar, October 2014.https://​doi.​org/​10.​3115/​v1/​W14-4012
6.
go back to reference Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota, June 2019. https://doi.org/10.18653/v1/N19-1423 Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota, June 2019. https://​doi.​org/​10.​18653/​v1/​N19-1423
7.
go back to reference Drozdov, I., et al.: Supervised and unsupervised language modelling in chest x-ray radiological reports. Plos One 15(3), e0229963 (2020)CrossRef Drozdov, I., et al.: Supervised and unsupervised language modelling in chest x-ray radiological reports. Plos One 15(3), e0229963 (2020)CrossRef
8.
go back to reference Gorinski, P.J., et al.: Named entity recognition for electronic health records: a comparison of rule-based and machine learning approaches. arXiv preprint arXiv:1903.03985 (2019) Gorinski, P.J., et al.: Named entity recognition for electronic health records: a comparison of rule-based and machine learning approaches. arXiv preprint arXiv:​1903.​03985 (2019)
9.
go back to reference Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 590–597 (2019) Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 590–597 (2019)
10.
go back to reference IST-3 collaborative group: Association between brain imaging signs, early and late outcomes, and response to intravenous alteplase after acute ischaemic stroke in the third International Stroke Trial (IST-3): secondary analysis of a randomised controlled trial. Lancet Neurol. 14, pp. 485–496 (2015). https://doi.org/10.1016/S1474-4422(15)00012-5 IST-3 collaborative group: Association between brain imaging signs, early and late outcomes, and response to intravenous alteplase after acute ischaemic stroke in the third International Stroke Trial (IST-3): secondary analysis of a randomised controlled trial. Lancet Neurol. 14, pp. 485–496 (2015). https://​doi.​org/​10.​1016/​S1474-4422(15)00012-5
11.
go back to reference Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)CrossRef Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)CrossRef
12.
go back to reference Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015) Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)
13.
go back to reference Loper, E., Bird, S.: NLTK: the natural language toolkit. In: Proceedings of the ACL Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing and Computational Linguistics. Association for Computational Linguistics, Philadelphia (2002) Loper, E., Bird, S.: NLTK: the natural language toolkit. In: Proceedings of the ACL Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing and Computational Linguistics. Association for Computational Linguistics, Philadelphia (2002)
14.
go back to reference Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)
15.
go back to reference Mullenbach, J., Wiegreffe, S., Duke, J., Sun, J., Eisenstein, J.: Explainable prediction of medical codes from clinical text. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 1101–1111. Association for Computational Linguistics, New Orleans, Louisiana, Jun 2018. https://doi.org/10.18653/v1/N18-1100 Mullenbach, J., Wiegreffe, S., Duke, J., Sun, J., Eisenstein, J.: Explainable prediction of medical codes from clinical text. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 1101–1111. Association for Computational Linguistics, New Orleans, Louisiana, Jun 2018. https://​doi.​org/​10.​18653/​v1/​N18-1100
16.
go back to reference Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetMATH Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetMATH
18.
go back to reference Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, ELRA, Valletta, Malta, pp. 45–50, May 2010 Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, ELRA, Valletta, Malta, pp. 45–50, May 2010
19.
go back to reference Smit, A., Jain, S., Rajpurkar, P., Pareek, A., Ng, A.Y., Lungren, M.P.: CheXbert: combining automatic labelers and expert annotations for accurate radiology report labeling using BERT. arXiv preprint arXiv:2004.09167 (2020) Smit, A., Jain, S., Rajpurkar, P., Pareek, A., Ng, A.Y., Lungren, M.P.: CheXbert: combining automatic labelers and expert annotations for accurate radiology report labeling using BERT. arXiv preprint arXiv:​2004.​09167 (2020)
20.
go back to reference Wolf, T., et al.: HuggingFace’s transformers: state-of-the-art natural language processing. ArXiv abs/1910.03771 (2019) Wolf, T., et al.: HuggingFace’s transformers: state-of-the-art natural language processing. ArXiv abs/1910.03771 (2019)
22.
23.
go back to reference Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1480–1489 (2016) Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1480–1489 (2016)
24.
go back to reference Yetisgen-Yildiz, M., Gunn, M.L., Xia, F., Payne, T.H.: A text processing pipeline to extract recommendations from radiology reports. J. Biomed. Inf. 46(2), 354–362 (2013)CrossRef Yetisgen-Yildiz, M., Gunn, M.L., Xia, F., Payne, T.H.: A text processing pipeline to extract recommendations from radiology reports. J. Biomed. Inf. 46(2), 354–362 (2013)CrossRef
25.
go back to reference Zech, J., et al.: Natural language-based machine learning models for the annotation of clinical radiology reports. Radiology 287(2), 570–580 (2018)MathSciNetCrossRef Zech, J., et al.: Natural language-based machine learning models for the annotation of clinical radiology reports. Radiology 287(2), 570–580 (2018)MathSciNetCrossRef
Metadata
Title
Paying Per-Label Attention for Multi-label Extraction from Radiology Reports
Authors
Patrick Schrempf
Hannah Watson
Shadia Mikhael
Maciej Pajak
Matúš Falis
Aneta Lisowska
Keith W. Muir
David Harris-Birtill
Alison Q. O’Neil
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-61166-8_29

Premium Partner