Skip to main content
Top
Published in: Progress in Additive Manufacturing 3/2019

03-01-2019 | Full Research Article

PCA-based desirability method for dimensional improvement of part extruded by fused deposition modelling technology

Authors: Azhar Equbal, Md. Israr Equbal, Anoop Kumar Sood

Published in: Progress in Additive Manufacturing | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fused deposition modelling (FDM) is an extrusion-based additive manufacturing technique that has the ability to build complicated geometry of parts in least possible time without any tooling problem. Extrusion-based methods offer various advantages but the part quality of fabricated part is poorer when measured in terms of dimensional accuracy. Quality of its fabricated part primarily depends on processing parameters like raster angle, air gap, layer thickness, etc. For improving the part accuracy, present work is aimed at optimization of FDM processing parameters. Response surface methodology-based face-centered central composite design is used for designing the experimental matrix and also to reduce the number of experimental runs. Analysis of variance is used to study the effects of processing parameters on responses. Empirical model relating the parameters and responses is also developed. The suitability of developed model is tested using Anderson–darling normality test. Dimensional measurement shows that measured dimensions of fabricated part are always more than CAD model. Restriction of shrinkage during part fabrication causes oversize dimension of part. Besides, chosen processing parameters is the major reason for dimensional inaccuracy of the fabricated part. Weighted principal component analysis (WPCA)-based desirability function method is used as a hybrid approach to find the optimal parameter setting for part fabrication with minimum overall deviations in dimension. Optimization process suggests that part fabrication should be done at 30° raster angle, − 0.004 mm air gap and 0.4064 mm raster width for minimal relative changes in length (∆L), width (∆W) and thickness (∆T).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Peng A, Xiao X, Yue R (2014) Process parameter optimization for fused deposition modeling using response surface methodology combined with fuzzy inference system. Int J Adv Manuf Technol 73:87–100CrossRef Peng A, Xiao X, Yue R (2014) Process parameter optimization for fused deposition modeling using response surface methodology combined with fuzzy inference system. Int J Adv Manuf Technol 73:87–100CrossRef
2.
go back to reference Piotr K (2016) A Review of fused deposition modeling process models, In: Rusiński E., Pietrusiak D. (eds) Proceedings of the 13th International scientific conference. RESRB 2016. Lecture notes in mechanical engineering. Springer, Cham Piotr K (2016) A Review of fused deposition modeling process models, In: Rusiński E., Pietrusiak D. (eds) Proceedings of the 13th International scientific conference. RESRB 2016. Lecture notes in mechanical engineering. Springer, Cham
3.
go back to reference Mohamed O, Masood SH, Bhowmik JL (2015) optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 3(1):42–53CrossRef Mohamed O, Masood SH, Bhowmik JL (2015) optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 3(1):42–53CrossRef
4.
go back to reference Kai C, Fai LK (1997) Rapid prototyping: principles and applications in manufacturing. Wiley, Singapore Kai C, Fai LK (1997) Rapid prototyping: principles and applications in manufacturing. Wiley, Singapore
5.
go back to reference Nancharaiah T, Raju DR, Raju VR (2010) An experimental investigation on surface quality and dimensional accuracy of FDM components. Int J Emerg Technol 1(2):106–111 Nancharaiah T, Raju DR, Raju VR (2010) An experimental investigation on surface quality and dimensional accuracy of FDM components. Int J Emerg Technol 1(2):106–111
6.
go back to reference Onwubolu GC, Rayegani F (2014) Characterization and optimization of mechanical properties of ABS parts manufactured by the fused deposition modelling process, Int J Manuf Eng 5:1–13 Onwubolu GC, Rayegani F (2014) Characterization and optimization of mechanical properties of ABS parts manufactured by the fused deposition modelling process, Int J Manuf Eng 5:1–13
7.
go back to reference IDurgun, Ertan R (2014) Experimental investigation of FDM process for improvement of mechanical properties and production cost. Rapid Prototyp J 20:228–235CrossRef IDurgun, Ertan R (2014) Experimental investigation of FDM process for improvement of mechanical properties and production cost. Rapid Prototyp J 20:228–235CrossRef
8.
go back to reference Ahn SH, Odell D, Roundy S, Wright PK (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 8(4):248–257CrossRef Ahn SH, Odell D, Roundy S, Wright PK (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 8(4):248–257CrossRef
9.
go back to reference Pandey PM, Thrimurthulu K, Venkata N, Reddy (2004) Optimal part deposition orientation in FDM by using a multicriteria genetic algorithm. Int J Prod Res 42(19):4069–4089CrossRefMATH Pandey PM, Thrimurthulu K, Venkata N, Reddy (2004) Optimal part deposition orientation in FDM by using a multicriteria genetic algorithm. Int J Prod Res 42(19):4069–4089CrossRefMATH
10.
go back to reference Thrimurthulu K, Pandey PM, Venkata N, Reddy (2004) Optimum part deposition orientation in fused deposition modeling. Int J Mach Tools Manuf 44(6):585–594CrossRefMATH Thrimurthulu K, Pandey PM, Venkata N, Reddy (2004) Optimum part deposition orientation in fused deposition modeling. Int J Mach Tools Manuf 44(6):585–594CrossRefMATH
11.
go back to reference Sood AK, Ohdar RK, Mahapatra SS (2009) Improving dimensional accuracy of fused deposition modeling processed part using grey Taguchi method. Mater Des 30:4243–4252CrossRef Sood AK, Ohdar RK, Mahapatra SS (2009) Improving dimensional accuracy of fused deposition modeling processed part using grey Taguchi method. Mater Des 30:4243–4252CrossRef
12.
go back to reference Sahu RK, Mahapatra SS, Sood AK (2013) A study on dimensional accuracy of fused deposition modelling (FDM) processed parts using fuzzy logic. J Manuf Sci Prod 13(3):183–197 Sahu RK, Mahapatra SS, Sood AK (2013) A study on dimensional accuracy of fused deposition modelling (FDM) processed parts using fuzzy logic. J Manuf Sci Prod 13(3):183–197
13.
go back to reference Rayegani F, Onwubolu GC (2014) Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE). Int J Adv Manuf Technol 73(1):509–519CrossRef Rayegani F, Onwubolu GC (2014) Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE). Int J Adv Manuf Technol 73(1):509–519CrossRef
14.
go back to reference Salmi M, Ituarte IF, Chekurov S, Huotilainen E (2016) Effect of build orientation in 3D printing production for material extrusion, material jetting, binder jetting, sheet object lamination, vat photopolymerisation, and powder bed fusion. Int J Collab Enterp 5(3–4):218–231 Salmi M, Ituarte IF, Chekurov S, Huotilainen E (2016) Effect of build orientation in 3D printing production for material extrusion, material jetting, binder jetting, sheet object lamination, vat photopolymerisation, and powder bed fusion. Int J Collab Enterp 5(3–4):218–231
15.
go back to reference Basavaraj CK, Vishwas M (2016) Studies on effect of fused deposition modelling process parameters on ultimate tensile strength and dimensional accuracy of Nylon, IOP Conf. Mater Sci Eng 149:1–11 Basavaraj CK, Vishwas M (2016) Studies on effect of fused deposition modelling process parameters on ultimate tensile strength and dimensional accuracy of Nylon, IOP Conf. Mater Sci Eng 149:1–11
16.
go back to reference Wang CC, Lin TW, Hu SS (2007) Optimizing the rapid prototyping process by integrating the Taguchi method with the gray relational analysis. Rapid Prototyp J 13(5):304–315CrossRef Wang CC, Lin TW, Hu SS (2007) Optimizing the rapid prototyping process by integrating the Taguchi method with the gray relational analysis. Rapid Prototyp J 13(5):304–315CrossRef
17.
go back to reference Lee BH, Abdullah J, Khan ZA (2005) Optimization of rapid prototyping parameters for production of flexible ABS object. J Mater Process Technol 169:54–61CrossRef Lee BH, Abdullah J, Khan ZA (2005) Optimization of rapid prototyping parameters for production of flexible ABS object. J Mater Process Technol 169:54–61CrossRef
18.
go back to reference Equbal A, Sood AK, Ansari AR, Equbal MdA (2017) Optimization of process parameters of FDM part for minimiizing its dimensional inaccuracy. Int J Mech Prod Eng Res Dev 7(2):57–66 Equbal A, Sood AK, Ansari AR, Equbal MdA (2017) Optimization of process parameters of FDM part for minimiizing its dimensional inaccuracy. Int J Mech Prod Eng Res Dev 7(2):57–66
19.
go back to reference Panda S, Padhee S, Sood AK, Mahapatra SS (2009) Optimization of fused deposition modelling (FDM) process parameters using bacterial foraging technique. Intell Inf Manag 2:89–97 Panda S, Padhee S, Sood AK, Mahapatra SS (2009) Optimization of fused deposition modelling (FDM) process parameters using bacterial foraging technique. Intell Inf Manag 2:89–97
20.
go back to reference Routara BC, Mohanty SD, Datta S, Bandyopadhyay A, Mahapatra SS (2010) Combined quality loss (CQL) concept in WPCA-based Taguchi philosophy for optimization of multiple surface quality characteristics of UNS C34000 brass in cylindrical grinding. Int J Adv Manuf Technol 51:135–143CrossRef Routara BC, Mohanty SD, Datta S, Bandyopadhyay A, Mahapatra SS (2010) Combined quality loss (CQL) concept in WPCA-based Taguchi philosophy for optimization of multiple surface quality characteristics of UNS C34000 brass in cylindrical grinding. Int J Adv Manuf Technol 51:135–143CrossRef
21.
go back to reference Costa NR, Lourenço J, Pereira ZL (2011) Desirability function approach: a review and performance evaluation in adverse conditions. Chemom Intell Lab Syst 107:234–244CrossRef Costa NR, Lourenço J, Pereira ZL (2011) Desirability function approach: a review and performance evaluation in adverse conditions. Chemom Intell Lab Syst 107:234–244CrossRef
22.
go back to reference Hattiangadi A, Bandyopadhyay A (2000) Modeling of multiple pore ceramic materials fabricated via fused deposition process. Scr Mater 42:581–588CrossRef Hattiangadi A, Bandyopadhyay A (2000) Modeling of multiple pore ceramic materials fabricated via fused deposition process. Scr Mater 42:581–588CrossRef
23.
go back to reference Jeff Wu CF, Hamada M (2002) Experiments: planning, analysis, and parameter design optimization. Wiley, New DelhiMATH Jeff Wu CF, Hamada M (2002) Experiments: planning, analysis, and parameter design optimization. Wiley, New DelhiMATH
24.
go back to reference Montgomery DC (2003) Design and analysis of experiments. Wiley, Singapore Montgomery DC (2003) Design and analysis of experiments. Wiley, Singapore
25.
go back to reference Turner BN, Strong R, Gold SA (2014) A review of melt extrusion additive manufacturing processes: I. Process design and modelling. Rapid Prototyp J 20(3):192–204CrossRef Turner BN, Strong R, Gold SA (2014) A review of melt extrusion additive manufacturing processes: I. Process design and modelling. Rapid Prototyp J 20(3):192–204CrossRef
Metadata
Title
PCA-based desirability method for dimensional improvement of part extruded by fused deposition modelling technology
Authors
Azhar Equbal
Md. Israr Equbal
Anoop Kumar Sood
Publication date
03-01-2019
Publisher
Springer International Publishing
Published in
Progress in Additive Manufacturing / Issue 3/2019
Print ISSN: 2363-9512
Electronic ISSN: 2363-9520
DOI
https://doi.org/10.1007/s40964-018-00072-4

Other articles of this Issue 3/2019

Progress in Additive Manufacturing 3/2019 Go to the issue

Premium Partners