Skip to main content
Top
Published in:

01-12-2023 | Original Article

PCMeans: community detection using local PageRank, clustering, and K-means

Authors: Wafa Louafi, Faiza Titouna

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the rise of social networks, the task of community detection in networks has become increasingly difficult in recent years. In this study, we introduce a novel approach for community detection named PCMeans, which combines PageRank, hierarchical clustering, and k-means algorithms to tackle the community detection problem on the entire network. Our technique employs Local PageRank to identify the most influential nodes within a local subgraph, followed by an overlapping hierarchical clustering strategy that determines the optimal number of clusters on the entire network. While our approach uses Local PageRank, which operates locally on each node, the clustering itself is performed globally on the entire network. K-means learning is then applied to swiftly converge to the final community structure. PCMeans is an unsupervised method that is easy to implement, efficient, and simple, and it addresses three common problems, including the random selection of the initial central node, specification of the number of classes K, and slow convergence. Experiments show that our algorithm not only has improved influence but also effectively reduces time complexity and outperforms other recent approaches on both real networks and synthetic benchmarks. Our approach is versatile and can be applied to a wide range of community detection problems, including those with non-convex shapes and unknown numbers of communities.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akbar Z, Liu J, Latif Z (2021) Mining social applications network from business perspective using modularity maximization for community detection. Soc Netw Anal Min 11:1–19CrossRef Akbar Z, Liu J, Latif Z (2021) Mining social applications network from business perspective using modularity maximization for community detection. Soc Netw Anal Min 11:1–19CrossRef
go back to reference Bar-Yossef Z, Mashiach L-T (2008) Local approximation of pagerank and reverse pagerank. In: Proceedings of the 17th ACM conference on information and knowledge management, pp. 279–288 Bar-Yossef Z, Mashiach L-T (2008) Local approximation of pagerank and reverse pagerank. In: Proceedings of the 17th ACM conference on information and knowledge management, pp. 279–288
go back to reference Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008(10):10008CrossRef Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008(10):10008CrossRef
go back to reference Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN Syst 30(1–7):107–117CrossRef Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN Syst 30(1–7):107–117CrossRef
go back to reference Cai B, Zeng L, Wang Y, Li H, Hu Y (2019) Community detection method based on node density, degree centrality, and k-means clustering in complex network. Entropy 21(12):1145MathSciNetCrossRef Cai B, Zeng L, Wang Y, Li H, Hu Y (2019) Community detection method based on node density, degree centrality, and k-means clustering in complex network. Entropy 21(12):1145MathSciNetCrossRef
go back to reference Chaudhary L, Singh B (2021) Community detection using unsupervised machine learning techniques on covid-19 dataset. Soc Netw Anal Min 11:1–9CrossRef Chaudhary L, Singh B (2021) Community detection using unsupervised machine learning techniques on covid-19 dataset. Soc Netw Anal Min 11:1–9CrossRef
go back to reference Geng J, Bhattacharya A, Pati D (2019) Probabilistic community detection with unknown number of communities. J Am Stat Assoc 114(526):893–905MathSciNetCrossRef Geng J, Bhattacharya A, Pati D (2019) Probabilistic community detection with unknown number of communities. J Am Stat Assoc 114(526):893–905MathSciNetCrossRef
go back to reference Guo K, Huang X, Wu L, Chen Y (2022) Local community detection algorithm based on local modularity density. Appl Intell 52(2):1238–1253CrossRef Guo K, Huang X, Wu L, Chen Y (2022) Local community detection algorithm based on local modularity density. Appl Intell 52(2):1238–1253CrossRef
go back to reference Jiang JQ, McQuay LJ (2012) Modularity functions maximization with non negative relaxation facilitates community detection in networks. Phys A Stat Mech Appl 391(3):854–865CrossRef Jiang JQ, McQuay LJ (2012) Modularity functions maximization with non negative relaxation facilitates community detection in networks. Phys A Stat Mech Appl 391(3):854–865CrossRef
go back to reference Krebs V (2008) A network of co-purchased books about us politics. October 20(1), 0–03 Krebs V (2008) A network of co-purchased books about us politics. October 20(1), 0–03
go back to reference Kumar A, Barman D, Sarkar R, Chowdhury N (2020) Overlapping community detection using multiobjective genetic algorithm. IEEE Trans Comput Soc Syst 7(3):802–817CrossRef Kumar A, Barman D, Sarkar R, Chowdhury N (2020) Overlapping community detection using multiobjective genetic algorithm. IEEE Trans Comput Soc Syst 7(3):802–817CrossRef
go back to reference Li H, Zhang R, Zhao Z, Liu X (2021) Lpa-mni: an improved label propagation algorithm based on modularity and node importance for community detection. Entropy 23(5):497MathSciNetCrossRef Li H, Zhang R, Zhao Z, Liu X (2021) Lpa-mni: an improved label propagation algorithm based on modularity and node importance for community detection. Entropy 23(5):497MathSciNetCrossRef
go back to reference Liu X, Fu L, Wang X, Zhou C (2022) On the similarity between von Neumann graph entropy and structural information: interpretation, computation, and applications. IEEE Trans Inf Theory 68:2182–2202MathSciNetCrossRef Liu X, Fu L, Wang X, Zhou C (2022) On the similarity between von Neumann graph entropy and structural information: interpretation, computation, and applications. IEEE Trans Inf Theory 68:2182–2202MathSciNetCrossRef
go back to reference Luo W, Lu N, Ni L, Zhu W, Ding W (2020) Local community detection by the nearest nodes with greater centrality. Inf Sci 517:377–392MathSciNetCrossRef Luo W, Lu N, Ni L, Zhu W, Ding W (2020) Local community detection by the nearest nodes with greater centrality. Inf Sci 517:377–392MathSciNetCrossRef
go back to reference Lusseau D, Schneider K, Boisseau OJ, Haase P, Slooten E, Dawson SM (2003) The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav Ecol Sociobiol 54(4):396–405CrossRef Lusseau D, Schneider K, Boisseau OJ, Haase P, Slooten E, Dawson SM (2003) The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav Ecol Sociobiol 54(4):396–405CrossRef
go back to reference Ma T, Wang Y, Tang M, Cao J, Tian Y, Al-Dhelaan A, Al-Rodhaan M (2016) Led: a fast overlapping communities detection algorithm based on structural clustering. Neurocomputing 207:488–500CrossRef Ma T, Wang Y, Tang M, Cao J, Tian Y, Al-Dhelaan A, Al-Rodhaan M (2016) Led: a fast overlapping communities detection algorithm based on structural clustering. Neurocomputing 207:488–500CrossRef
go back to reference Ma T, Liu Q, Cao J, Tian Y, Al-Dhelaan A, Al-Rodhaan M (2020) Lgiem: global and local node influence based community detection. Futur Gener Comput Syst 105:533–546CrossRef Ma T, Liu Q, Cao J, Tian Y, Al-Dhelaan A, Al-Rodhaan M (2020) Lgiem: global and local node influence based community detection. Futur Gener Comput Syst 105:533–546CrossRef
go back to reference Moosavi SA, Jalali M, Misaghian N, Shamshirband S, Anisi MH (2017) Community detection in social networks using user frequent pattern mining. Knowl Inf Syst 51(1):159–186CrossRef Moosavi SA, Jalali M, Misaghian N, Shamshirband S, Anisi MH (2017) Community detection in social networks using user frequent pattern mining. Knowl Inf Syst 51(1):159–186CrossRef
go back to reference Musdar IA, Azhari S (2015) Metode rce-kmeans untuk clustering data. IJCCS (Indonesian Journal of Computing and Cybernetics Systems) 9(2):157–166CrossRef Musdar IA, Azhari S (2015) Metode rce-kmeans untuk clustering data. IJCCS (Indonesian Journal of Computing and Cybernetics Systems) 9(2):157–166CrossRef
go back to reference Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69(2):026113CrossRef Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69(2):026113CrossRef
go back to reference Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043):814–818CrossRef Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043):814–818CrossRef
go back to reference Parés F, Gasulla DG, Vilalta A, Moreno J, Ayguadé E, Labarta J, Cortés U, Suzumura T (2017) Fluid communities: a competitive, scalable and diverse community detection algorithm, 229–240. Springer Parés F, Gasulla DG, Vilalta A, Moreno J, Ayguadé E, Labarta J, Cortés U, Suzumura T (2017) Fluid communities: a competitive, scalable and diverse community detection algorithm, 229–240. Springer
go back to reference Pourkazemi M, Keyvanpour MR (2017) Community detection in social network by using a multi-objective evolutionary algorithm. Intell Data Anal 21(2):385–409CrossRef Pourkazemi M, Keyvanpour MR (2017) Community detection in social network by using a multi-objective evolutionary algorithm. Intell Data Anal 21(2):385–409CrossRef
go back to reference Raghavan UN, Albert R, Kumara S (2007) Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E 76(3):036106CrossRef Raghavan UN, Albert R, Kumara S (2007) Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E 76(3):036106CrossRef
go back to reference Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci 105(4):1118–1123CrossRef Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci 105(4):1118–1123CrossRef
go back to reference Sheng J, Liu C, Chen L, Wang B, Zhang J (2020) Research on community detection in complex networks based on internode attraction. Entropy 22(12):1383MathSciNetCrossRef Sheng J, Liu C, Chen L, Wang B, Zhang J (2020) Research on community detection in complex networks based on internode attraction. Entropy 22(12):1383MathSciNetCrossRef
go back to reference Van Laarhoven T, Marchiori E (2016) Local network community detection with continuous optimization of conductance and weighted kernel k-means. J Mach Learn Res 17(1):5148–5175MathSciNet Van Laarhoven T, Marchiori E (2016) Local network community detection with continuous optimization of conductance and weighted kernel k-means. J Mach Learn Res 17(1):5148–5175MathSciNet
go back to reference Vilcek A (2014) Deep learning with k-means applied to community detection in networks. CS224W Project Report Vilcek A (2014) Deep learning with k-means applied to community detection in networks. CS224W Project Report
go back to reference Wu Z, Wang X, Fang W, Liu L, Tang S, Zheng H, Zheng Z (2021) Community detection based on first passage probabilities. Phys Lett A 390:127099MathSciNetCrossRef Wu Z, Wang X, Fang W, Liu L, Tang S, Zheng H, Zheng Z (2021) Community detection based on first passage probabilities. Phys Lett A 390:127099MathSciNetCrossRef
go back to reference Yuan Y, Chen B, Yu Y, Jin Y (2020) An influence maximisation algorithm based on community detection. Int J Comput Sci Eng 22(1):1–14 Yuan Y, Chen B, Yu Y, Jin Y (2020) An influence maximisation algorithm based on community detection. Int J Comput Sci Eng 22(1):1–14
go back to reference Zachary WW (1977) An information flow model for conflict and fission in small groups. J Anthropol Res 33(4):452–473CrossRef Zachary WW (1977) An information flow model for conflict and fission in small groups. J Anthropol Res 33(4):452–473CrossRef
go back to reference Žalik KR (2008) An efficient k’-means clustering algorithm. Pattern Recognit Lett 29(9):1385–1391CrossRef Žalik KR (2008) An efficient k’-means clustering algorithm. Pattern Recognit Lett 29(9):1385–1391CrossRef
go back to reference Zhou X, Su L, Li X, Zhao Z, Li C (2023) Community detection based on unsupervised attributed network embedding. Expert Syst Appl 213:118937CrossRef Zhou X, Su L, Li X, Zhao Z, Li C (2023) Community detection based on unsupervised attributed network embedding. Expert Syst Appl 213:118937CrossRef
Metadata
Title
PCMeans: community detection using local PageRank, clustering, and K-means
Authors
Wafa Louafi
Faiza Titouna
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-023-01109-5

Premium Partner