Skip to main content
Top

2018 | OriginalPaper | Chapter

PEM Fuel Cell Modeling Using Genetic Algorithm—A Novel Approach

Authors : K. Priya, Sashang Roy Choudhury, K. Sathish Kumar, N. Rajasekar

Published in: Advances in Smart Grid and Renewable Energy

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to analyze, model, and control of power generation, precise models of proton exchange membrane fuel cells (PEMFCs) are very important. As we know, there has been a lot of research on nanofluid coolants and how they improve the heat transfer properties of the base fluid. Hence, a PEM fuel cell modeling using genetic algorithm (GA) is presented in this paper that exactly tries to estimate the output of the fuel cell performance when Al2O3 nanofluid coolant is used. In this paper, we determine the thermal conductivity of Al2O3 nanofluid coolant with different concentrations of ethylene glycol and water and simulate the PEMFC performance by means of the data generated using GA.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang, J., Xie, Z., Zhang, J., Tang, Y., Song, C., Navessin, T., Shi, Z., et al.: High temperature PEM fuel cells. J. Power Sources 160(2), 872–891 (2006) Zhang, J., Xie, Z., Zhang, J., Tang, Y., Song, C., Navessin, T., Shi, Z., et al.: High temperature PEM fuel cells. J. Power Sources 160(2), 872–891 (2006)
2.
go back to reference O’hayre, R., Cha, S.W., Prinz, F.B., Colella, W.: Fuel Cell Fundamentals. Wiley, New York (2016) O’hayre, R., Cha, S.W., Prinz, F.B., Colella, W.: Fuel Cell Fundamentals. Wiley, New York (2016)
3.
go back to reference Lee, J.Y., Yoo, M., Cha, K., Lim, T.W., Hur, T.: Life cycle cost analysis to examine the economical feasibility of hydrogen as an alternative fuel. Int J. Hydrogen Energy 34(10), 4243–4255 (2009) Lee, J.Y., Yoo, M., Cha, K., Lim, T.W., Hur, T.: Life cycle cost analysis to examine the economical feasibility of hydrogen as an alternative fuel. Int J. Hydrogen Energy 34(10), 4243–4255 (2009)
4.
go back to reference Peighambardoust, S.J., Rowshanzamir, S., Amjadi, M.: Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrogen Energy 35(17), 9349–9384 (2010) Peighambardoust, S.J., Rowshanzamir, S., Amjadi, M.: Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrogen Energy 35(17), 9349–9384 (2010)
5.
6.
go back to reference Wee, J.H.: Applications of proton exchange membrane fuel cell systems. Renew. Sustain. Energy Rev. 11(8), 1720–1738 (2007) Wee, J.H.: Applications of proton exchange membrane fuel cell systems. Renew. Sustain. Energy Rev. 11(8), 1720–1738 (2007)
7.
go back to reference Chandan, A., Hattenberger, M., El-Kharouf, A., Du, S., Dhir, A., Self, V., Pollet, B.G., Ingram, A., Bujalski, W.: High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)—a review. J. Power Sources 231, 264–278 (2013) Chandan, A., Hattenberger, M., El-Kharouf, A., Du, S., Dhir, A., Self, V., Pollet, B.G., Ingram, A., Bujalski, W.: High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)—a review. J. Power Sources 231, 264–278 (2013)
8.
go back to reference Rayment, C., Sherwin, S.: Introduction to Fuel Cell Technology. Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, pp. 11–12 (2003) Rayment, C., Sherwin, S.: Introduction to Fuel Cell Technology. Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, pp. 11–12 (2003)
9.
go back to reference Matian, M., Marquis, A.J., Brandon, N.P.: Application of thermal imaging to validate a heat transfer model for polymer electrolyte fuel cells. Int. J. Hydrogen Energy 35(22), 12308–12316 (2010)CrossRef Matian, M., Marquis, A.J., Brandon, N.P.: Application of thermal imaging to validate a heat transfer model for polymer electrolyte fuel cells. Int. J. Hydrogen Energy 35(22), 12308–12316 (2010)CrossRef
10.
go back to reference Shahsavari, S., Desouza, A., Bahrami, M., Kjeang, E.: Thermal analysis of air-cooled PEM fuel cells. Int. J. Hydrogen Energy 37(23), 18261–18271 (2012) Shahsavari, S., Desouza, A., Bahrami, M., Kjeang, E.: Thermal analysis of air-cooled PEM fuel cells. Int. J. Hydrogen Energy 37(23), 18261–18271 (2012)
11.
go back to reference Amphlett, J.C., Baumert, R.M., Mann, R.F., Peppley, B.A., Roberge, P.R., Harris, T.J.: Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell I. Mechanistic model development. J. Electrochem. Soc. 142(1), 1–8 (1995) Amphlett, J.C., Baumert, R.M., Mann, R.F., Peppley, B.A., Roberge, P.R., Harris, T.J.: Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell I. Mechanistic model development. J. Electrochem. Soc. 142(1), 1–8 (1995)
12.
go back to reference Ye, M., Wang, X., Xu, Y.: Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization. Int. J. Hydrogen Energy 34(2), 981–989 (2009) Ye, M., Wang, X., Xu, Y.: Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization. Int. J. Hydrogen Energy 34(2), 981–989 (2009)
13.
go back to reference Larminie, J., Dicks, A., McDonald, M.S.: Fuel Cell Systems Explained, vol. 2. Wiley, Chichester (2003) Larminie, J., Dicks, A., McDonald, M.S.: Fuel Cell Systems Explained, vol. 2. Wiley, Chichester (2003)
14.
go back to reference Niya, S.M.R., Hoorfar, M.: Process modeling of the ohmic loss in proton exchange membrane fuel cells. Electrochim. Acta 120, 193–203 (2014) Niya, S.M.R., Hoorfar, M.: Process modeling of the ohmic loss in proton exchange membrane fuel cells. Electrochim. Acta 120, 193–203 (2014)
15.
go back to reference Jeon, S.W., Cha, D., Kim, H.S., Kim, Y.: Analysis of the system efficiency of an intermediate temperature proton exchange membrane fuel cell at elevated temperature and relative humidity conditions. Appl. Energy 166, 165–173 (2016) Jeon, S.W., Cha, D., Kim, H.S., Kim, Y.: Analysis of the system efficiency of an intermediate temperature proton exchange membrane fuel cell at elevated temperature and relative humidity conditions. Appl. Energy 166, 165–173 (2016)
16.
go back to reference Thomson, G.W.: The Antoine equation for vapor-pressure data. Chem. Rev. 38(1), 1–39 (1946) Thomson, G.W.: The Antoine equation for vapor-pressure data. Chem. Rev. 38(1), 1–39 (1946)
17.
go back to reference Haddad, Z., Abid, C., Oztop, H.F., Mataoui, A.: A review on how the researchers prepare their nanofluids. Int. J. Thermal Sci. 76, 168–189 (2014) Haddad, Z., Abid, C., Oztop, H.F., Mataoui, A.: A review on how the researchers prepare their nanofluids. Int. J. Thermal Sci. 76, 168–189 (2014)
18.
go back to reference Hamilton, R.L., Crosser, O.K.: Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1(3), 187–191 (1962)CrossRef Hamilton, R.L., Crosser, O.K.: Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1(3), 187–191 (1962)CrossRef
19.
go back to reference Maxwell, J.C.: A Treatise on Electricity and Magnetism, vol. 1. Clarendon Press (1881) Maxwell, J.C.: A Treatise on Electricity and Magnetism, vol. 1. Clarendon Press (1881)
20.
go back to reference Priya, K., Sudhakar Babu, T., Balasubramanian, K., Sathish Kumar, K., Rajasekar, N.: A novel approach for fuel cell parameter estimation using simple genetic algorithm. Sustain. Energy Technol. Assess. 12, 46–52 (2015) Priya, K., Sudhakar Babu, T., Balasubramanian, K., Sathish Kumar, K., Rajasekar, N.: A novel approach for fuel cell parameter estimation using simple genetic algorithm. Sustain. Energy Technol. Assess. 12, 46–52 (2015)
Metadata
Title
PEM Fuel Cell Modeling Using Genetic Algorithm—A Novel Approach
Authors
K. Priya
Sashang Roy Choudhury
K. Sathish Kumar
N. Rajasekar
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-4286-7_53