Skip to main content
Top
Published in: Journal of Sol-Gel Science and Technology 3/2017

20-10-2016 | Original Paper: Sol-gel and hybrid materials for energy, environment and building applications

PEO/PVDF-based gel polymer electrolyte by incorporating nano-TiO2 for electrochromic glass

Authors: Peng Chen, Xiaoping Liang, Jun Wang, Di Zhang, Shanmin Yang, Weishan Wu, Wei Zhang, Xiaowei Fan, Dequan Zhang

Published in: Journal of Sol-Gel Science and Technology | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To develop high performance mixed matrix gel polymer electrolyte, the synergistic effect of blending PVDF (PEO/PVDF weigh ratio of 85:15) and adding nano-TiO2 (0.5–2 wt.%) to traditional monomer poly (ethylene oxide) was investigated. Thermogravimetric analysis indicated that poly (ethylene oxide)/poly (vinylidene fluoride) blend had an excellent thermal performance. X-ray diffraction analysis revealed that poly (ethylene oxide)/poly (vinylidene fluoride) blend leads to lower crystallinity and the amorphicity of corresponding gel polymer electrolyte increases with increasing nano-TiO2 concentration. The maximum ionic conductivity (2.12 × 10−6 and 6.37 × 10−6 S/cm) of poly (ethylene oxide)/-(TiO2)0.5 and poly (ethylene oxide)/poly (vinylidene fluoride)/-(TiO2)0.5 gel polymer electrolyte at room temperature (25 °C) were obtained, respectively. The prepared poly (ethylene oxide)/poly (vinylidene fluoride)-TiO2 gel polymer electrolyte demonstrated about 2.6 and 1.8-fold increment in the fracture strength as compared to that of poly (ethylene oxide) gel polymer electrolyte and poly (ethylene oxide)-TiO2 gel polymer electrolyte. The average transmittance of poly (ethylene oxide)/poly (vinylidene fluoride)-TiO2 gel polymer electrolyte was about 90 % in the visible region. With good electrical, mechanical and optical performance, it is very suitable for being applied in electrochromic glass.

Graphical Abstract

https://static-content.springer.com/image/art%3A10.1007%2Fs10971-016-4235-5/MediaObjects/10971_2016_4235_Figa_HTML.gif

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rao CVS, Ravi M, Raja V, Bhargav PB, Sharma AK, Rao VN (2012) Preparation and characterization of PVP-based polymer electrolytes for solid-state battery applications. Iran Polym J 21:531–536CrossRef Rao CVS, Ravi M, Raja V, Bhargav PB, Sharma AK, Rao VN (2012) Preparation and characterization of PVP-based polymer electrolytes for solid-state battery applications. Iran Polym J 21:531–536CrossRef
2.
go back to reference Yap YL, You AH, Teo LL, Hanapei H (2013) Inorganic filler sizes effect on ionic conductivity in polyethylene oxide (PEO) composite polymer electrolyte. Int J Electrochem Sci 8:2154–2163 Yap YL, You AH, Teo LL, Hanapei H (2013) Inorganic filler sizes effect on ionic conductivity in polyethylene oxide (PEO) composite polymer electrolyte. Int J Electrochem Sci 8:2154–2163
3.
go back to reference Stephan AM, Kumar SG, Renganathan NG, Kulandainathan MA (2005) Characterization of poly (vinylidene fluoride–hexafluoropropylene) (PVDF-HFP) electrolytes complexed with different lithium salts. Eur Polym J 41:15–21CrossRef Stephan AM, Kumar SG, Renganathan NG, Kulandainathan MA (2005) Characterization of poly (vinylidene fluoride–hexafluoropropylene) (PVDF-HFP) electrolytes complexed with different lithium salts. Eur Polym J 41:15–21CrossRef
4.
go back to reference Hashmi SA (2004) Supercapacitor: an emerging power source. Natl Acad Sci Lett 27:27–46 Hashmi SA (2004) Supercapacitor: an emerging power source. Natl Acad Sci Lett 27:27–46
5.
go back to reference Goodenough JB, Kim Y (2009) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRef Goodenough JB, Kim Y (2009) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRef
6.
go back to reference Li ZH, Zhang P, Zhang HP, Wu YP, Zhou XD (2008) A lotus root-like porous nanocomposites polymer electrolyte. Electrochem Commun 10:791–794CrossRef Li ZH, Zhang P, Zhang HP, Wu YP, Zhou XD (2008) A lotus root-like porous nanocomposites polymer electrolyte. Electrochem Commun 10:791–794CrossRef
7.
go back to reference Yang CR, Perng JT, Wang YY, Wan CC (1996) Conductive behaviour of lithium ions in polyacrylonitrile. J Power Sources 62:89–93CrossRef Yang CR, Perng JT, Wang YY, Wan CC (1996) Conductive behaviour of lithium ions in polyacrylonitrile. J Power Sources 62:89–93CrossRef
8.
go back to reference Gao K, Hu X, Yi TF, Dai C (2006) PE-g-MMA polymer electrolyte membrane for lithium polymer battery. Electrochim Acta 52:443–449CrossRef Gao K, Hu X, Yi TF, Dai C (2006) PE-g-MMA polymer electrolyte membrane for lithium polymer battery. Electrochim Acta 52:443–449CrossRef
9.
go back to reference Appetecchi GB, Croce F, Scrosati B (1995) Kinetics and stability of the lithium electrode in poly (methyl methacrylate)-based gel electrolytes. Electrochim Acta 40:991–997CrossRef Appetecchi GB, Croce F, Scrosati B (1995) Kinetics and stability of the lithium electrode in poly (methyl methacrylate)-based gel electrolytes. Electrochim Acta 40:991–997CrossRef
10.
go back to reference Nadimicherla R, Kalla R, Muchakayala R, Guo X (2015) Effects of potassium iodide (KI) on crystallinity, thermal stability, and electrical properties of polymer blend electrolytes (PVC/PEO:KI). Solid State Ionics 278:260–267CrossRef Nadimicherla R, Kalla R, Muchakayala R, Guo X (2015) Effects of potassium iodide (KI) on crystallinity, thermal stability, and electrical properties of polymer blend electrolytes (PVC/PEO:KI). Solid State Ionics 278:260–267CrossRef
11.
go back to reference Polu AR, Rhee HW (2015) Nanocomposite solid polymer electrolytes based on poly(ethylene oxide)/POSS-PEG (n=13.3) hybrid nanoparticles for lithium ion batteries. J Ind Eng Chem 31:323–329CrossRef Polu AR, Rhee HW (2015) Nanocomposite solid polymer electrolytes based on poly(ethylene oxide)/POSS-PEG (n=13.3) hybrid nanoparticles for lithium ion batteries. J Ind Eng Chem 31:323–329CrossRef
12.
go back to reference Park CH, Lim JY, Lee JH, Lee JM, Park JT, Kim JH (2016) Synthesis and application of PEGBEM-g-POEM graft copolymer electrolytes for dye-sensitized solar cells. Solid State Ionics 290:24–30.CrossRef Park CH, Lim JY, Lee JH, Lee JM, Park JT, Kim JH (2016) Synthesis and application of PEGBEM-g-POEM graft copolymer electrolytes for dye-sensitized solar cells. Solid State Ionics 290:24–30.CrossRef
13.
go back to reference Deng F, Wang X, He D, Hu J, Gong C, Ye YS, Xue Z (2015) Microporous polymer electrolyte based on PVDF/PEO star polymer blends for lithium ion batteries. J Membrane Sci 491:82–89CrossRef Deng F, Wang X, He D, Hu J, Gong C, Ye YS, Xue Z (2015) Microporous polymer electrolyte based on PVDF/PEO star polymer blends for lithium ion batteries. J Membrane Sci 491:82–89CrossRef
14.
go back to reference Cheng S, Smith DM, Li CY (2015) Anisotropic ion transport in a Poly (ethylene oxide)-LiClO4 solid state electrolyte templated by graphene oxide. Macromolecules 48(13):4503–4510CrossRef Cheng S, Smith DM, Li CY (2015) Anisotropic ion transport in a Poly (ethylene oxide)-LiClO4 solid state electrolyte templated by graphene oxide. Macromolecules 48(13):4503–4510CrossRef
15.
go back to reference Zhao H, Ding X, Yang P, Li L, Li X, Zhang Y (2015) A novel multi-armed and star-like poly (ethylene oxide) membrane for CO2 separation.J Membr Sci 489:258–263CrossRef Zhao H, Ding X, Yang P, Li L, Li X, Zhang Y (2015) A novel multi-armed and star-like poly (ethylene oxide) membrane for CO2 separation.J Membr Sci 489:258–263CrossRef
16.
go back to reference Jeon H, Lee CS, Patel R, Kim JH (2015) Well-organized meso-macroporous TiO2/SiO2 film derived from amphiphilic bubbery comb copolymer. ACS Appl Mater Inter 7(14):7767–7775CrossRef Jeon H, Lee CS, Patel R, Kim JH (2015) Well-organized meso-macroporous TiO2/SiO2 film derived from amphiphilic bubbery comb copolymer. ACS Appl Mater Inter 7(14):7767–7775CrossRef
17.
go back to reference Chi WS, Kim SJ, Lee SJ, Bae YS, Kim JH (2015) Enhanced performance of mixed-matrix membranes through a graft copolymer-directed interface and interaction tuning approach. ChemSusChem 8(4):650–658CrossRef Chi WS, Kim SJ, Lee SJ, Bae YS, Kim JH (2015) Enhanced performance of mixed-matrix membranes through a graft copolymer-directed interface and interaction tuning approach. ChemSusChem 8(4):650–658CrossRef
18.
go back to reference Lee L, Park SJ, Kim S (2013) Effect of nano-sized barium titanate addition on PEO/PVDF blend-based composite polymer electrolytes. Solid State Ionics 234(10):19–24CrossRef Lee L, Park SJ, Kim S (2013) Effect of nano-sized barium titanate addition on PEO/PVDF blend-based composite polymer electrolytes. Solid State Ionics 234(10):19–24CrossRef
19.
go back to reference Tang M, Liau WR (2000) Solvent effect on the miscibility of poly (4-hydroxystyrene)-poly (ethylene oxide) blends. Eur Polym J 36(12):2597–2603CrossRef Tang M, Liau WR (2000) Solvent effect on the miscibility of poly (4-hydroxystyrene)-poly (ethylene oxide) blends. Eur Polym J 36(12):2597–2603CrossRef
20.
go back to reference Bai BC, Kim JG, Im Ji S, Lee YS (2011) The hydrogen storage capacity of metal-containing polyacrylonitrile-based electrospun carbon nanofibers. Carbon Lett 12(3):171–176CrossRef Bai BC, Kim JG, Im Ji S, Lee YS (2011) The hydrogen storage capacity of metal-containing polyacrylonitrile-based electrospun carbon nanofibers. Carbon Lett 12(3):171–176CrossRef
21.
go back to reference Rocco AM, Pereira RP, Felisberti MI (2001) Miscibility, crystallinity and morphological behavior of binary blends of poly (ethylene oxide) and poly (methyl vinyl ether-maleic acid). Polymer (Guildf) 42(12):5199–5205CrossRef Rocco AM, Pereira RP, Felisberti MI (2001) Miscibility, crystallinity and morphological behavior of binary blends of poly (ethylene oxide) and poly (methyl vinyl ether-maleic acid). Polymer (Guildf) 42(12):5199–5205CrossRef
22.
go back to reference Tamilselvi P, Hema M (2014) Conductivity studies of LiCF3SO3 doped PVA:PVdF blend polymer electrolyte. Physica B: Condensed Matter 437:53–57CrossRef Tamilselvi P, Hema M (2014) Conductivity studies of LiCF3SO3 doped PVA:PVdF blend polymer electrolyte. Physica B: Condensed Matter 437:53–57CrossRef
23.
go back to reference Fan L, Dang Z, Nan CW, Li M (2002) Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P(VDF-HFP) blends. Electrochim Acta 48:205–209CrossRef Fan L, Dang Z, Nan CW, Li M (2002) Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P(VDF-HFP) blends. Electrochim Acta 48:205–209CrossRef
24.
go back to reference Muthuvinayagam M, Gopinathan C (2015) Characterization of proton conducting polymer blend electrolytes based on PVDF-PVA. Polymer (Guildf) 68:122–130CrossRef Muthuvinayagam M, Gopinathan C (2015) Characterization of proton conducting polymer blend electrolytes based on PVDF-PVA. Polymer (Guildf) 68:122–130CrossRef
25.
go back to reference Liao Y, Chen T, Luo X, Fu Z, Li X, Li W (2016) Cycling performance improvement of polypropylene supported poly (vinylidenefluoride-co-hexafluoropropylene)/maleic anhydride-grated-polyvinylidene fluoride based gel electrolyte by incorporating nano-Al2O3 for full batteries. J Membr Sci 507:126–134CrossRef Liao Y, Chen T, Luo X, Fu Z, Li X, Li W (2016) Cycling performance improvement of polypropylene supported poly (vinylidenefluoride-co-hexafluoropropylene)/maleic anhydride-grated-polyvinylidene fluoride based gel electrolyte by incorporating nano-Al2O3 for full batteries. J Membr Sci 507:126–134CrossRef
26.
go back to reference Liu S, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J (2010) Effect of nano-silicafiller in polymer electrolyte on Li dendrite formation in Li/poly (ethylene oxide)–Li(CF3SO2)2 N/Li. J Power Sources 195(19):6847–6853CrossRef Liu S, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J (2010) Effect of nano-silicafiller in polymer electrolyte on Li dendrite formation in Li/poly (ethylene oxide)–Li(CF3SO2)2 N/Li. J Power Sources 195(19):6847–6853CrossRef
27.
go back to reference Chung SH, Wang Y, Persi L, Croce F, Greenbaum SG, Scrosati B, Plichta E (2001) Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides. J Power Sources 97:644–648CrossRef Chung SH, Wang Y, Persi L, Croce F, Greenbaum SG, Scrosati B, Plichta E (2001) Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides. J Power Sources 97:644–648CrossRef
28.
go back to reference Vickraman P, Senthilkumar V (2010) A study on the role of BaTiO3 in lithum bis (perfluoroethanesulfonyl) imide-based PVDF-HFP nanocomposites. Ionics 16(8):763–768CrossRef Vickraman P, Senthilkumar V (2010) A study on the role of BaTiO3 in lithum bis (perfluoroethanesulfonyl) imide-based PVDF-HFP nanocomposites. Ionics 16(8):763–768CrossRef
29.
go back to reference Liang B, Tang S, Jiang Q, Chen C, Chen X, Li S, Yan X (2015) Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochim Acta 169:334–341CrossRef Liang B, Tang S, Jiang Q, Chen C, Chen X, Li S, Yan X (2015) Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochim Acta 169:334–341CrossRef
30.
go back to reference Ni’mah YL, Cheng MY, Cheng JH, Rick J, Hwang BJ (2015) Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries. J Power Sources 278:375–381CrossRef Ni’mah YL, Cheng MY, Cheng JH, Rick J, Hwang BJ (2015) Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries. J Power Sources 278:375–381CrossRef
31.
go back to reference Kim KS, Park SJ (2012) Influence of N-doped TiO2 on lithium ion conductivity of porous polymeric electrolyte membrane containing LiClO4. Solid State Ionics 212:18–25CrossRef Kim KS, Park SJ (2012) Influence of N-doped TiO2 on lithium ion conductivity of porous polymeric electrolyte membrane containing LiClO4. Solid State Ionics 212:18–25CrossRef
32.
go back to reference Polu AR, Rhee HW (2016) Effect of TiO2 nanoparticles on structural, thermal, mechanical and ionic conductivity studies of PEO12-LiTDI solid polymer electrolyte. J Ind Eng Chem 37:347–353CrossRef Polu AR, Rhee HW (2016) Effect of TiO2 nanoparticles on structural, thermal, mechanical and ionic conductivity studies of PEO12-LiTDI solid polymer electrolyte. J Ind Eng Chem 37:347–353CrossRef
33.
go back to reference Xie H, Liao Y, Sun P, Chen T, Rao M, Li W (2014) Investigation on polyethylene-supported and nano-SiO2 doped poly (methyl methacrylate-co-butyl acrylate) based gel polymer electrolyte for high voltage lithium ion battery. Electrochim Acta 127:327–333CrossRef Xie H, Liao Y, Sun P, Chen T, Rao M, Li W (2014) Investigation on polyethylene-supported and nano-SiO2 doped poly (methyl methacrylate-co-butyl acrylate) based gel polymer electrolyte for high voltage lithium ion battery. Electrochim Acta 127:327–333CrossRef
34.
go back to reference Reddeppa N, Sharma AK, Rao VVRN, Chen W (2014) AC conduction mechanism and battery discharge characteristics of (PVC/PEO) polyblend films complexed with potassium chloride. Measurement 47:33–41CrossRef Reddeppa N, Sharma AK, Rao VVRN, Chen W (2014) AC conduction mechanism and battery discharge characteristics of (PVC/PEO) polyblend films complexed with potassium chloride. Measurement 47:33–41CrossRef
35.
go back to reference Klongkan S, Pumchusak J (2015) Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte. Electrochim Acta 161:171–176CrossRef Klongkan S, Pumchusak J (2015) Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte. Electrochim Acta 161:171–176CrossRef
36.
go back to reference Klongkan S, Pumchusak J (2015) Effects of the addition of LiCF3SO3 salt on the conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte. Int J Chem Eng Appl 6(3):165 Klongkan S, Pumchusak J (2015) Effects of the addition of LiCF3SO3 salt on the conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte. Int J Chem Eng Appl 6(3):165
37.
go back to reference Moreno M, Quijada R, Santa Ana MA, Benavente E, Gomez-Romero P, González G (2011) Electrical and mechanical properties of poly (ethylene oxide)/intercalated clay polymer electrolyte. Electrochim Acta 58:112–118CrossRef Moreno M, Quijada R, Santa Ana MA, Benavente E, Gomez-Romero P, González G (2011) Electrical and mechanical properties of poly (ethylene oxide)/intercalated clay polymer electrolyte. Electrochim Acta 58:112–118CrossRef
Metadata
Title
PEO/PVDF-based gel polymer electrolyte by incorporating nano-TiO2 for electrochromic glass
Authors
Peng Chen
Xiaoping Liang
Jun Wang
Di Zhang
Shanmin Yang
Weishan Wu
Wei Zhang
Xiaowei Fan
Dequan Zhang
Publication date
20-10-2016
Publisher
Springer US
Published in
Journal of Sol-Gel Science and Technology / Issue 3/2017
Print ISSN: 0928-0707
Electronic ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-016-4235-5

Other articles of this Issue 3/2017

Journal of Sol-Gel Science and Technology 3/2017 Go to the issue

Original Paper: Sol-gel and hybrid materials for energy, environment and building applications

Transesterification of soybean oil for biodiesel production over CaAlSi mixed oxide nanoparticles

Original Paper: Sol-gel and hybrid materials for energy, environment and building applications

Preparation and CO2 capture properties of nanocrystalline Li2ZrO3 via an epoxide-mediated sol–gel process

Original Paper: Sol-gel and hybrid materials with surface modification for applications

Effects of SiO2 coating on luminescence property and thermostability of Sr2MgSi2O7: Eu2+, Dy3+ phosphors

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

A general strategy to synthesis Mg-Ti-O nanofibers by sol–gel assisted electrospinning

Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications

Facile route to synthesize mesoporous SBA-15 rods with different sizes for lysozyme immobilization

Premium Partners