Skip to main content
Top
Published in:

05-06-2024

Performance analysis of CsPbI3-based solar cells under light emitting diode illumination as an energy harvester for IoT and indoor photovoltaics

Authors: M. Sujith, R. Thandaiah Prabu, ATA. Kishore Kumar, Atul Kumar

Published in: Journal of Computational Electronics | Issue 4/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Internet of things (IoT) has necessitated the development of indoor photovoltaics to enable a web of self-powered wireless sensors/nodes. We analysed a CsPbI3 wide band gap perovskite for indoor photovoltaic application. An Indoor photovoltaic (IPV) device based on CsPbI3 showed a theoretical efficiency of 51.5% at a band gap of 1.8 eV under indoor light-emitting diode (LED) illumination. This high efficiency is due to better capture of the narrow emission spectrum of LED by a high band gap CsPbI3 absorber. Under low luminance of indoor light sources, there is a low density of photogenerated carriers, which increases the ratio of trapped electrons to photogenerated electrons. The low photogenerated carrier density lowered bulk recombination, and the high trapped electrons to photogenerated electrons ratio increases IPV sensitivity toward interfacial recombination. Finally, the device optimization strategies of the IPV device, distinct from outdoor illumination devices are highlighted.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Müller, D., Jiang, E., Rivas-Lazaro, P., Baretzky, C., Loukeris, G., Bogati, S., Paetel, S., Irvine, S.J.C., Oklobia, O., Jones, S., Lamb, D., Richter, A., Siefer, G., Lackner, D., Helmers, H., Teixeira, C., Forgács, D., Freitag, M., Bradford, D., Shen, Z., Zimmermann, B., Würfel, U.: Indoor photovoltaics for the internet-of-things—A comparison of state-of-the-art devices from different photovoltaic technologies. ACS Appl. Energy Mater. 6(20), 10404–10414 (2023)CrossRef Müller, D., Jiang, E., Rivas-Lazaro, P., Baretzky, C., Loukeris, G., Bogati, S., Paetel, S., Irvine, S.J.C., Oklobia, O., Jones, S., Lamb, D., Richter, A., Siefer, G., Lackner, D., Helmers, H., Teixeira, C., Forgács, D., Freitag, M., Bradford, D., Shen, Z., Zimmermann, B., Würfel, U.: Indoor photovoltaics for the internet-of-things—A comparison of state-of-the-art devices from different photovoltaic technologies. ACS Appl. Energy Mater. 6(20), 10404–10414 (2023)CrossRef
3.
go back to reference Jaimes, A.F., Sousa, F.R.: Simple modeling of photovoltaic solar cells for indoor harvesting applications. Sol. Energy 157, 792–802 (2017)CrossRef Jaimes, A.F., Sousa, F.R.: Simple modeling of photovoltaic solar cells for indoor harvesting applications. Sol. Energy 157, 792–802 (2017)CrossRef
4.
go back to reference Michaels, H., Rinderle, M., Benesperi, I., Freitag, R., Gagliardi, A., Freitag, M.: Emerging indoor photovoltaics for self-powered and self-aware IoT towards sustainable energy management. Chem. Sci. 14, 5350–5360 (2023)CrossRef Michaels, H., Rinderle, M., Benesperi, I., Freitag, R., Gagliardi, A., Freitag, M.: Emerging indoor photovoltaics for self-powered and self-aware IoT towards sustainable energy management. Chem. Sci. 14, 5350–5360 (2023)CrossRef
6.
go back to reference Zhang, F., Li, X., Yan, Y., Li, M., Lin, T., Zhou, J., Zhu, Y., Denghui, Xu.: Suppressed carrier recombination and boosted open-circuit voltage of indoor organic photovoltaic device with fullerene acceptor. Appl. Phys. A 129, 621 (2023)CrossRef Zhang, F., Li, X., Yan, Y., Li, M., Lin, T., Zhou, J., Zhu, Y., Denghui, Xu.: Suppressed carrier recombination and boosted open-circuit voltage of indoor organic photovoltaic device with fullerene acceptor. Appl. Phys. A 129, 621 (2023)CrossRef
7.
go back to reference Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)CrossRef Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)CrossRef
8.
go back to reference Freunek, M., Freunek, M., Reindl, L.M.: Maximum efficiencies of indoor photovoltaic devices. IEEE J. Photovolt. 3(1), 59–64 (2013)CrossRef Freunek, M., Freunek, M., Reindl, L.M.: Maximum efficiencies of indoor photovoltaic devices. IEEE J. Photovolt. 3(1), 59–64 (2013)CrossRef
9.
go back to reference Teran, A.S., Wong, J., Lim, W., Kim, G., Lee, Y., Blaauw, D., Phillips, J.D.: AlGaAs photovoltaics for indoor energy harvesting in mm-scale wireless sensor nodes. IEEE Trans. Electron Devices 62(7), 2170–2175 (2015)CrossRef Teran, A.S., Wong, J., Lim, W., Kim, G., Lee, Y., Blaauw, D., Phillips, J.D.: AlGaAs photovoltaics for indoor energy harvesting in mm-scale wireless sensor nodes. IEEE Trans. Electron Devices 62(7), 2170–2175 (2015)CrossRef
10.
go back to reference Teran, A.S., Moon, E., Lim, W., Kim, G., Lee, I., Blaauw, D., Phillips, J.D.: Energy harvesting for GaAs photovoltaics under low-flux indoor lighting conditions. IEEE Trans. Electron Devices 63(7), 2820–2825 (2016)CrossRef Teran, A.S., Moon, E., Lim, W., Kim, G., Lee, I., Blaauw, D., Phillips, J.D.: Energy harvesting for GaAs photovoltaics under low-flux indoor lighting conditions. IEEE Trans. Electron Devices 63(7), 2820–2825 (2016)CrossRef
11.
go back to reference Haque, K.A., Baten, M.Z.: On the prospect of CZTSSe based thin film solar cells for indoor photovoltaic applications: A simulation study. AIP Adv. 9, 055326 (2019)CrossRef Haque, K.A., Baten, M.Z.: On the prospect of CZTSSe based thin film solar cells for indoor photovoltaic applications: A simulation study. AIP Adv. 9, 055326 (2019)CrossRef
12.
go back to reference Saha, A., Haque, K.A., Baten, M.Z.: Performance evaluation of single-junction indoor photovoltaic devices for different absorber bandgaps under spectrally varying white light-emitting diodes. IEEE J. Photovoltaics 10(2), 539–545 (2019)CrossRef Saha, A., Haque, K.A., Baten, M.Z.: Performance evaluation of single-junction indoor photovoltaic devices for different absorber bandgaps under spectrally varying white light-emitting diodes. IEEE J. Photovoltaics 10(2), 539–545 (2019)CrossRef
13.
go back to reference Haque, K.A., Baten, M.Z.: Correlation between performance characteristics of indoor photovoltaic devices and DC-to-DC up-converters for low-power electronic applications. IET Circuits Devices Syst. 15(8), 728–737 (2021)CrossRef Haque, K.A., Baten, M.Z.: Correlation between performance characteristics of indoor photovoltaic devices and DC-to-DC up-converters for low-power electronic applications. IET Circuits Devices Syst. 15(8), 728–737 (2021)CrossRef
14.
go back to reference Feng, M., Zuo, C., Xue, D.-J., Liu, X., Ding, L.: Wide-bandgap perovskites for indoor photovoltaics. Sci. Bull 66, 2047–2049 (2021)CrossRef Feng, M., Zuo, C., Xue, D.-J., Liu, X., Ding, L.: Wide-bandgap perovskites for indoor photovoltaics. Sci. Bull 66, 2047–2049 (2021)CrossRef
15.
go back to reference Virtuani, A., Lotter, E., Powalla, M.: Influence of the light source on the low-irradiance performance of Cu(In, Ga)Se2 solar cells. Sol. Energy Mater. Sol. Cells 90, 2141–2149 (2006)CrossRef Virtuani, A., Lotter, E., Powalla, M.: Influence of the light source on the low-irradiance performance of Cu(In, Ga)Se2 solar cells. Sol. Energy Mater. Sol. Cells 90, 2141–2149 (2006)CrossRef
16.
go back to reference Jahandar, M., Kim, S., Lim, D.C.: Indoor organic photovoltaics for self-sustaining IoT devices: progress challenges and practicalization. ChemSusChem 14, 3449–3474 (2021)CrossRef Jahandar, M., Kim, S., Lim, D.C.: Indoor organic photovoltaics for self-sustaining IoT devices: progress challenges and practicalization. ChemSusChem 14, 3449–3474 (2021)CrossRef
17.
go back to reference Chen, F.C.: Emerging organic and organic/inorganic hybrid photovoltaic devices for specialty applications: low-level-lighting energy conversion and biomedical treatment. Adv. Optical Mater. 7, 1800662 (2019)CrossRef Chen, F.C.: Emerging organic and organic/inorganic hybrid photovoltaic devices for specialty applications: low-level-lighting energy conversion and biomedical treatment. Adv. Optical Mater. 7, 1800662 (2019)CrossRef
19.
go back to reference Pirc, M., Ajdič, Ž, Uršič, D., Jošt, M., Topič, M.: Indoor energy harvesting with perovskite solar cells for IoT applications─A full year monitoring study. ACS Appl. Energy Mater. 7(2), 565–575 (2024)CrossRef Pirc, M., Ajdič, Ž, Uršič, D., Jošt, M., Topič, M.: Indoor energy harvesting with perovskite solar cells for IoT applications─A full year monitoring study. ACS Appl. Energy Mater. 7(2), 565–575 (2024)CrossRef
22.
go back to reference Sujit, M., Thandaiah Prabu, R., Ramachandran, R., Kumar, A.: CsSn0. 5Ge0. 5I3 based lead-free highly stable perovskite solar cell: numerical modeling for estimating performance ceiling. Phys. Status Solidi A 220, 2300449 (2023)CrossRef Sujit, M., Thandaiah Prabu, R., Ramachandran, R., Kumar, A.: CsSn0. 5Ge0. 5I3 based lead-free highly stable perovskite solar cell: numerical modeling for estimating performance ceiling. Phys. Status Solidi A 220, 2300449 (2023)CrossRef
23.
go back to reference Gomathi, S., Raj, A.G.S., Mishra, C.S., Kumar, A.: Straddling type sandwiched absorber based solar cell structure. Optik 272, 170354 (2023)CrossRef Gomathi, S., Raj, A.G.S., Mishra, C.S., Kumar, A.: Straddling type sandwiched absorber based solar cell structure. Optik 272, 170354 (2023)CrossRef
24.
go back to reference Burgelman, M., Nollet, P., Degrave, S.: Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361–362, 527–532 (2000)CrossRef Burgelman, M., Nollet, P., Degrave, S.: Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361–362, 527–532 (2000)CrossRef
25.
go back to reference Prabu, R.T., Malathi, S.R., Kumar, A., Al-Asbahi, B.A., Laref, A.: Bandgap assessment of compositional variation for uncovering high-efficiency improved stable all-inorganic lead-free perovskite solar cells. Phys. Status Solidi A 220, 2200791 (2023)CrossRef Prabu, R.T., Malathi, S.R., Kumar, A., Al-Asbahi, B.A., Laref, A.: Bandgap assessment of compositional variation for uncovering high-efficiency improved stable all-inorganic lead-free perovskite solar cells. Phys. Status Solidi A 220, 2200791 (2023)CrossRef
26.
go back to reference Guo, Z., Jena, A.K., Takei, I., Ikegami, M., Ishii, A., Numata, Y., Shibayama, N., Miyasaka, T.: Dopant-free polymer HTM-based CsPbI2Br solar cells with efficiency over 17% in sunlight and 34% in indoor light. Adv. Funct. Mater. 31, 2103614 (2021)CrossRef Guo, Z., Jena, A.K., Takei, I., Ikegami, M., Ishii, A., Numata, Y., Shibayama, N., Miyasaka, T.: Dopant-free polymer HTM-based CsPbI2Br solar cells with efficiency over 17% in sunlight and 34% in indoor light. Adv. Funct. Mater. 31, 2103614 (2021)CrossRef
27.
go back to reference Zhang, C., Liu, C., Gao, Y., Zhu, S., Chen, F., Huang, B., Xie, Y., Liu, Y., Ma, M., Wang, Z., Shaohang, W., Schropp, R., Mai, Y.: Br vacancy defects healed perovskite indoor photovoltaic modules with certified power conversion efficiency exceeding 36%. Adv. Sci. 9, 2204138 (2022)CrossRef Zhang, C., Liu, C., Gao, Y., Zhu, S., Chen, F., Huang, B., Xie, Y., Liu, Y., Ma, M., Wang, Z., Shaohang, W., Schropp, R., Mai, Y.: Br vacancy defects healed perovskite indoor photovoltaic modules with certified power conversion efficiency exceeding 36%. Adv. Sci. 9, 2204138 (2022)CrossRef
28.
go back to reference Wang, K.-L., Zhou, Y.-H., Lou, Y.-H., Wang, Z.-K.: Perovskite indoor photovoltaics: opportunity and challenges. Chem. Sci. 12, 11936–11954 (2021)CrossRef Wang, K.-L., Zhou, Y.-H., Lou, Y.-H., Wang, Z.-K.: Perovskite indoor photovoltaics: opportunity and challenges. Chem. Sci. 12, 11936–11954 (2021)CrossRef
29.
go back to reference Ghosh, P., Bruckbauer, J., Trager-Cowan, C., Jagadamma, L.K.: Crystalline grain engineered CsPbIBr 2 films for indoor photovoltaics. Appl. Surf. Sci. 592, 152865 (2022)CrossRef Ghosh, P., Bruckbauer, J., Trager-Cowan, C., Jagadamma, L.K.: Crystalline grain engineered CsPbIBr 2 films for indoor photovoltaics. Appl. Surf. Sci. 592, 152865 (2022)CrossRef
30.
go back to reference Guo, Z., Jena, A.K., Miyasaka, T.: Halide perovskites for indoor photovoltaics: the next possibility. ACS Energy Lett. 8(1), 90–95 (2023)CrossRef Guo, Z., Jena, A.K., Miyasaka, T.: Halide perovskites for indoor photovoltaics: the next possibility. ACS Energy Lett. 8(1), 90–95 (2023)CrossRef
31.
go back to reference Glowienka, D., Galagan, Y.: Light intensity analysis of photovoltaic parameters for perovskite solar cells. Adv. Mater. 34, 2105920 (2022)CrossRef Glowienka, D., Galagan, Y.: Light intensity analysis of photovoltaic parameters for perovskite solar cells. Adv. Mater. 34, 2105920 (2022)CrossRef
32.
go back to reference Thandaiah Prabu, R., Satyajeet Sahoo, K., Valarmathi, A.G., Raj, S., Ranjan, P., Kumar, A., Laref, A.: CsPbI3 perovskite solar cell and decoding its skink feature in JV curve. Mater. Sci. Semicond Process 162, 107539 (2023)CrossRef Thandaiah Prabu, R., Satyajeet Sahoo, K., Valarmathi, A.G., Raj, S., Ranjan, P., Kumar, A., Laref, A.: CsPbI3 perovskite solar cell and decoding its skink feature in JV curve. Mater. Sci. Semicond Process 162, 107539 (2023)CrossRef
Metadata
Title
Performance analysis of CsPbI3-based solar cells under light emitting diode illumination as an energy harvester for IoT and indoor photovoltaics
Authors
M. Sujith
R. Thandaiah Prabu
ATA. Kishore Kumar
Atul Kumar
Publication date
05-06-2024
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 4/2024
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02180-7