Skip to main content
Top

2020 | OriginalPaper | Chapter

Performance Analysis of Image Compression Using LPWCF

Authors : V. P. Kulalvaimozhi, M. Germanus Alex, S. John Peter

Published in: Intelligent Communication Technologies and Virtual Mobile Networks

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Image compression is the most important feature for acheiving an efficient and secure data transfer. One of the main challenges in compression is developing an effective decompression. The input images that is compressed may not be more effectively restored in the decompression process that is based on quantization using Cosine Transformations or Wavelet transformations where the pixel information will be lost. To overcome these challenges, encoding process were employed. In the encoding process the pixel information were well protected but the compression efficiency is not improved. In order to overcome this challenge Lossless Patch Wise Code Formation (LPWCF) is employed. In the patch wise code generation the compression process is based on the pixel grouping and removing the relevant and recurrent pixels. In the proposed method, the images were first reduced in size by combining the current pixel with the previous pixel. The resulting image size is nearly the half of the size of the input image. The resulting image is then divided into small patches. In the patch recurrent pixels and their locations were identified. The identified pixel locations were placed prior to the pixel value and then the process is repeated for the complete image. The result of each patch acts as a code. In the receiver side the same process is reversed inorder to obtain a decompressed image. The process is completely reversible and hence the process can be employed in the process of transmission of the images. The performance of the process is measured in terms of the compression ratio, the image quality analysis of the input and the decompressed image based on PSNR, MSE and SSIM.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Saxena, L., Armstrong, L.: A survey of image processing techniques for agriculture (2014) Saxena, L., Armstrong, L.: A survey of image processing techniques for agriculture (2014)
2.
go back to reference Rehman, M., Sharif, M., Raza, M.: Image compression: A survey. Res. J. Appl. Sci. Eng. Technol. 7, 656–672 (2014)CrossRef Rehman, M., Sharif, M., Raza, M.: Image compression: A survey. Res. J. Appl. Sci. Eng. Technol. 7, 656–672 (2014)CrossRef
3.
go back to reference Ramesh, S., Bharat, P., Anand, J., Selvan, J.A.: Analysis of lossy hyperspectral image compression techniques. Int. J. Comput. Sci. Mob. Comput. 3, 302–307 (2014) Ramesh, S., Bharat, P., Anand, J., Selvan, J.A.: Analysis of lossy hyperspectral image compression techniques. Int. J. Comput. Sci. Mob. Comput. 3, 302–307 (2014)
4.
go back to reference Babu, K.S., Ramachandran, V., Thyagharajan, K., Santhosh, G.: Hyperspectral image compression algorithms—a review. In: Artificial Intelligence and Evolutionary Algorithms in Engineering Systems. Springer, pp. 127–138 (2015) Babu, K.S., Ramachandran, V., Thyagharajan, K., Santhosh, G.: Hyperspectral image compression algorithms—a review. In: Artificial Intelligence and Evolutionary Algorithms in Engineering Systems. Springer, pp. 127–138 (2015)
5.
go back to reference Puri, A., Sharifahmadian, E., Latifi, S.: A comparison of hyperspectral image compression methods. Int. J. Comput. Electr. Eng. 6, 493 (2014)CrossRef Puri, A., Sharifahmadian, E., Latifi, S.: A comparison of hyperspectral image compression methods. Int. J. Comput. Electr. Eng. 6, 493 (2014)CrossRef
6.
go back to reference Wang, L., Bai, J., Wu, J., Jeon, G.: Hyperspectral image compression based on Lapped transform and Tucker decomposition. Sig. Process. Image Commun. 36, 63–69 (2015)CrossRef Wang, L., Bai, J., Wu, J., Jeon, G.: Hyperspectral image compression based on Lapped transform and Tucker decomposition. Sig. Process. Image Commun. 36, 63–69 (2015)CrossRef
7.
go back to reference Sujithra, D., Manickam, T., Sudheer, D.: Compression of hyperspectral image using discrete wavelet transform and Walsh Hadamard transform. Int. J. Adv. Res. Electron. Commun. Eng. (IJARECE) 2, 314–319 (2013) Sujithra, D., Manickam, T., Sudheer, D.: Compression of hyperspectral image using discrete wavelet transform and Walsh Hadamard transform. Int. J. Adv. Res. Electron. Commun. Eng. (IJARECE) 2, 314–319 (2013)
8.
go back to reference Cheng, K.-J., Dill, J.: Lossless to lossy dual-tree BEZW compression for hyperspectral images. IEEE Trans. Geosci. Remote Sens. 52, 5765–5770 (2014)CrossRef Cheng, K.-J., Dill, J.: Lossless to lossy dual-tree BEZW compression for hyperspectral images. IEEE Trans. Geosci. Remote Sens. 52, 5765–5770 (2014)CrossRef
9.
go back to reference Huber-Lerner, M., Hadar, O., Rotman, S.R., Huber-Shalem, R.: Compression of hyperspectral images containing a subpixel target. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 2246–2255 (2014)CrossRef Huber-Lerner, M., Hadar, O., Rotman, S.R., Huber-Shalem, R.: Compression of hyperspectral images containing a subpixel target. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 2246–2255 (2014)CrossRef
10.
go back to reference Du, Q., Ly, N., Fowler, J.E.: An operational approach to PCA+JPEG2000 compression of hyperspectral imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 2237–2245 (2014)CrossRef Du, Q., Ly, N., Fowler, J.E.: An operational approach to PCA+JPEG2000 compression of hyperspectral imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 2237–2245 (2014)CrossRef
11.
go back to reference Amrani, N., Laparra, V., Camps-Valls, G., Serra-Sagristà, J., Malo, J.: Lossless coding of hyperspectral images with principal polynomial analysis. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 4023-4026 (2014) Amrani, N., Laparra, V., Camps-Valls, G., Serra-Sagristà, J., Malo, J.: Lossless coding of hyperspectral images with principal polynomial analysis. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 4023-4026 (2014)
12.
go back to reference Narmadha, D., Gayathri, K., Thilagavathi, K., Basha, N.: An optimal HSI image compression using DWT and CP. Int. J. Electr. Comput. Eng. 4, 411 (2014) Narmadha, D., Gayathri, K., Thilagavathi, K., Basha, N.: An optimal HSI image compression using DWT and CP. Int. J. Electr. Comput. Eng. 4, 411 (2014)
13.
go back to reference Wu, J., Kong, W., Mielikainen, J., Huang, B.: Lossless compression of hyperspectral imagery via clustered differential pulse code modulation with removal of local spectral outliers. IEEE Sig. Process. Lett. 22, 2194–2198 (2015)CrossRef Wu, J., Kong, W., Mielikainen, J., Huang, B.: Lossless compression of hyperspectral imagery via clustered differential pulse code modulation with removal of local spectral outliers. IEEE Sig. Process. Lett. 22, 2194–2198 (2015)CrossRef
14.
go back to reference Nahavandi, S.K., Ghamisi, P., Kumar, L., Couceiro, M.: A novel adaptive compression technique for dealing with corrupt bands and high levels of band correlations in hyperspectral images based on binary hybrid GA-PSO for big data compression. Int. J. Comput. Appl. 109, 18–25 (2015) Nahavandi, S.K., Ghamisi, P., Kumar, L., Couceiro, M.: A novel adaptive compression technique for dealing with corrupt bands and high levels of band correlations in hyperspectral images based on binary hybrid GA-PSO for big data compression. Int. J. Comput. Appl. 109, 18–25 (2015)
15.
go back to reference Zhang, L., Zhang, L., Tao, D., Huang, X., Du, B.: Compression of hyperspectral remote sensing images by tensor approach. Neurocomputing 147, 358–363 (2015)CrossRef Zhang, L., Zhang, L., Tao, D., Huang, X., Du, B.: Compression of hyperspectral remote sensing images by tensor approach. Neurocomputing 147, 358–363 (2015)CrossRef
16.
go back to reference Shahriyar, S., Paul, M., Murshed, M., Ali, M.: Lossless hyperspectral image compression using binary tree based decomposition. In: 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1-8 (2016) Shahriyar, S., Paul, M., Murshed, M., Ali, M.: Lossless hyperspectral image compression using binary tree based decomposition. In: 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1-8 (2016)
17.
go back to reference Amrani, N., Serra-Sagristà, J., Laparra, V., Marcellin, M.W., Malo, J.: Regression wavelet analysis for lossless coding of remote-sensing data. IEEE Trans. Geosci. Remote Sens. 54, 5616–5627 (2016)CrossRef Amrani, N., Serra-Sagristà, J., Laparra, V., Marcellin, M.W., Malo, J.: Regression wavelet analysis for lossless coding of remote-sensing data. IEEE Trans. Geosci. Remote Sens. 54, 5616–5627 (2016)CrossRef
18.
go back to reference Zhang, L., Wei, W., Zhang, Y., Yan, H., Li, F., Tian, C.: Locally similar sparsity-based hyperspectral compressive sensing using unmixing. IEEE Trans. Comput. Imaging 2, 86–100 (2016)MathSciNetCrossRef Zhang, L., Wei, W., Zhang, Y., Yan, H., Li, F., Tian, C.: Locally similar sparsity-based hyperspectral compressive sensing using unmixing. IEEE Trans. Comput. Imaging 2, 86–100 (2016)MathSciNetCrossRef
19.
go back to reference Fu, W., Li, S., Fang, L., Benediktsson, J.A.: Adaptive spectral-spatial compression of hyperspectral image with sparse representation. IEEE Trans. Geosci. Remote Sens. 55, 671–682 (2017)CrossRef Fu, W., Li, S., Fang, L., Benediktsson, J.A.: Adaptive spectral-spatial compression of hyperspectral image with sparse representation. IEEE Trans. Geosci. Remote Sens. 55, 671–682 (2017)CrossRef
20.
go back to reference Shen, H., Pan, W.D., Wu, D.: Predictive lossless compression of regions of interest in hyperspectral images with no-data regions. IEEE Trans. Geosci. Remote Sens. 55, 173–182 (2017)CrossRef Shen, H., Pan, W.D., Wu, D.: Predictive lossless compression of regions of interest in hyperspectral images with no-data regions. IEEE Trans. Geosci. Remote Sens. 55, 173–182 (2017)CrossRef
Metadata
Title
Performance Analysis of Image Compression Using LPWCF
Authors
V. P. Kulalvaimozhi
M. Germanus Alex
S. John Peter
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-28364-3_3