Skip to main content
Top

2024 | OriginalPaper | Chapter

Performance Analysis of N-Beats and Regression Learners for Wind Speed Forecasting and Predictions

Authors : Jatin Prakash, P. K. Kankar, Ankur Miglani

Published in: Proceedings of the 9th National Conference on Wind Engineering

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the critical need for accurate wind speed forecasting in the context of renewable energy. It discusses the application of XGBoost and AdaBoost regressors for wind speed prediction, comparing their performance metrics. Additionally, the chapter introduces the N-Beats model for time series forecasting, demonstrating its effectiveness in minimizing power supply fluctuations. The methodologies presented offer valuable insights into enhancing the management of wind power generation, making the chapter a must-read for specialists in the field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang X, Guo P, Huang X (2011) A review of wind power forecasting models. Energy Proc 12:770–778CrossRef Wang X, Guo P, Huang X (2011) A review of wind power forecasting models. Energy Proc 12:770–778CrossRef
2.
go back to reference Cortez P, Rocha M, Neves J (2004) Evolving time series forecasting ARMA models. J Heuris 10:415–429CrossRef Cortez P, Rocha M, Neves J (2004) Evolving time series forecasting ARMA models. J Heuris 10:415–429CrossRef
3.
go back to reference Zhang GP (2003) Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50:159–175CrossRefMATH Zhang GP (2003) Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50:159–175CrossRefMATH
4.
go back to reference Prakash J, Miglani A, Kankar PK (2022) Internal leakage detection in hydraulic pump using model-agnostic feature ranking and ensemble classifiers. J Comput Inform Sci Eng 23(4):1–41 Prakash J, Miglani A, Kankar PK (2022) Internal leakage detection in hydraulic pump using model-agnostic feature ranking and ensemble classifiers. J Comput Inform Sci Eng 23(4):1–41
5.
go back to reference Prakash J, Kankar PK, Miglani A (2021) Internal leakage detection in a hydraulic pump using exhaustive feature selection and ensemble learning. In: 2021 international conference on maintenance and intelligent asset management (ICMIAM). IEEE, pp 1–6 Prakash J, Kankar PK, Miglani A (2021) Internal leakage detection in a hydraulic pump using exhaustive feature selection and ensemble learning. In: 2021 international conference on maintenance and intelligent asset management (ICMIAM). IEEE, pp 1–6
6.
go back to reference Prakash J, Kankar PK (2021) Determining the working behaviour of hydraulic system using support vector machine. In: Advances in systems engineering: select proceedings of NSC 2019. Springer Singapore, Singapore, pp 781–791 Prakash J, Kankar PK (2021) Determining the working behaviour of hydraulic system using support vector machine. In: Advances in systems engineering: select proceedings of NSC 2019. Springer Singapore, Singapore, pp 781–791
7.
go back to reference Prakash J, Kankar PK, Miglani A (2021) Monitoring the degradation in the Switching behavior of a hydraulic valve using recurrence quantification analysis and fractal dimensions. J Comput Inform Sci Eng 21(6):061010-1–061010-9 Prakash J, Kankar PK, Miglani A (2021) Monitoring the degradation in the Switching behavior of a hydraulic valve using recurrence quantification analysis and fractal dimensions. J Comput Inform Sci Eng 21(6):061010-1–061010-9
8.
go back to reference Kankar PK, Sharma SC, Harsha SP (2011) Fault diagnosis of ball bearings using machine learning methods. Expert Syst Appl 38(3):1876–1886CrossRef Kankar PK, Sharma SC, Harsha SP (2011) Fault diagnosis of ball bearings using machine learning methods. Expert Syst Appl 38(3):1876–1886CrossRef
9.
go back to reference Harsha SP, Nataraj C, Kankar PK (2006) The effect of ball waviness on nonlinear vibration associated with rolling element bearings. Int J Acoust Vib 11(2):56–66 Harsha SP, Nataraj C, Kankar PK (2006) The effect of ball waviness on nonlinear vibration associated with rolling element bearings. Int J Acoust Vib 11(2):56–66
10.
go back to reference Ranawat NS, Prakash J, Miglani A, Kankar PK (2023) Performance evaluation of LSTM and Bi-LSTM using non-convolutional features for blockage detection in centrifugal pump. Eng Appl Artif Intell 122:106092CrossRef Ranawat NS, Prakash J, Miglani A, Kankar PK (2023) Performance evaluation of LSTM and Bi-LSTM using non-convolutional features for blockage detection in centrifugal pump. Eng Appl Artif Intell 122:106092CrossRef
12.
go back to reference Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H, Zhou T (2015) Xgboost: extreme gradient boosting. R package version 0.4-2, vol 1, no 4, pp 1–4 Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H, Zhou T (2015) Xgboost: extreme gradient boosting. R package version 0.4-2, vol 1, no 4, pp 1–4
13.
go back to reference Prakash J, Kankar PK (2020) Health prediction of hydraulic cooling circuit using deep neural network with ensemble feature ranking technique. Measurement 151:107225CrossRef Prakash J, Kankar PK (2020) Health prediction of hydraulic cooling circuit using deep neural network with ensemble feature ranking technique. Measurement 151:107225CrossRef
14.
go back to reference Solomatine DP, Shrestha DL (2004) AdaBoost. RT: a boosting algorithm for regression problems. In: 2004 IEEE international joint conference on neural networks (IEEE Cat. No. 04CH37541), vol 2. IEEE, pp 1163–1168 Solomatine DP, Shrestha DL (2004) AdaBoost. RT: a boosting algorithm for regression problems. In: 2004 IEEE international joint conference on neural networks (IEEE Cat. No. 04CH37541), vol 2. IEEE, pp 1163–1168
15.
go back to reference Oreshkin BN, Carpov D, Chapados N, Bengio Y (2019) N-BEATS: neural basis expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437 Oreshkin BN, Carpov D, Chapados N, Bengio Y (2019) N-BEATS: neural basis expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:​1905.​10437
Metadata
Title
Performance Analysis of N-Beats and Regression Learners for Wind Speed Forecasting and Predictions
Authors
Jatin Prakash
P. K. Kankar
Ankur Miglani
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-4183-4_6

    Premium Partner