Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Neural Computing and Applications 34/2023

22-09-2023 | Original Article

Performance analysis of neural network-based unified physical layer for indoor hybrid LiFi–WiFi flying networks

Authors: Dil Nashin Anwar, Rizwana Ahmad, Haythem Bany Salameh, Hany Elgala, Moussa Ayyash

Published in: Neural Computing and Applications | Issue 34/2023

Log in

Abstract

The recent developments in unmanned aerial vehicles (UAVs) and indoor hybrid LiFi–WiFi networks (HLWNs) present a significant opportunity for creating low-cost, power-efficient, reliable, flexible, and ad-hoc HLWN-enabled indoor flying networks (IFNs). However, to efficiently operate and practically realize indoor HLWN, a unified physical layer (UniPHY) is indispensable for joint communication (control and data transfer) and sensing (e.g., localization). A UniPHY structure reduces costs and increases overall flexibility for HLWN-based IFNs. While conventional block-based wireless transceivers independently designed for LiFi and WiFi offer mediocre performance for a composite UniPHY waveform, a machine learning-based end-to-end learning framework for UniPHY can improve overall error performance and reduce the complexity of UAV transceiver hardware. Therefore, this paper proposes a novel generic end-to-end learning framework for a UniPHY system that can efficiently enable HLWN. The performance of the proposed learning framework based on deep neural networks (DNNs) and convolutional neural networks (CNNs) is investigated. Additionally, we assess the computational complexity of the proposed DNN and CNN learning frameworks. The results demonstrate that the performance of DNNs and CNNs varies depending on the considered channel model. Specifically, the analysis reveals that CNNs outperform traditional DNNs in WiFi (Rayleigh fading-based) channels. In contrast, traditional DNNs perform better than CNNs in LiFi (additive white Gaussian noise (AWGN)-based) channels.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang J Andrew, et al (2021) Enabling joint communication and radar sensing in mobile networks-a survey. IEEE Commun Surv Tutor Zhang J Andrew, et al (2021) Enabling joint communication and radar sensing in mobile networks-a survey. IEEE Commun Surv Tutor
2.
go back to reference Liu F, Masouros C (2020) A tutorial on joint radar and communication transmission for vehicular networks-part i: background and fundamentals. IEEE Commun Lett 25(2):322–326 CrossRef Liu F, Masouros C (2020) A tutorial on joint radar and communication transmission for vehicular networks-part i: background and fundamentals. IEEE Commun Lett 25(2):322–326 CrossRef
3.
go back to reference Qadir Z, Le KN, Saeed N, Munawar HS (2022) Towards 6g internet of things: recent advances, use cases, and open challenges. ICT Express Qadir Z, Le KN, Saeed N, Munawar HS (2022) Towards 6g internet of things: recent advances, use cases, and open challenges. ICT Express
4.
go back to reference Khosiawan Y, Nielsen I (2016) A system of UAV application in indoor environment. Prod Manuf Res 4(1):2–22 Khosiawan Y, Nielsen I (2016) A system of UAV application in indoor environment. Prod Manuf Res 4(1):2–22
5.
go back to reference Ayyash M, Elgala H, Khreishah A, Jungnickel V, Little T, Shao S, Rahaim M, Schulz D, Hilt J, Freund R (2016) Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges. IEEE Commun Mag 54(2):64–71 CrossRef Ayyash M, Elgala H, Khreishah A, Jungnickel V, Little T, Shao S, Rahaim M, Schulz D, Hilt J, Freund R (2016) Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges. IEEE Commun Mag 54(2):64–71 CrossRef
6.
go back to reference Hussein AF, Elgala H (2020) Design and spectral analysis of mixed-carrier communication for sixth-generation networks. Proc R Soc A 476(2238):20200165 CrossRef Hussein AF, Elgala H (2020) Design and spectral analysis of mixed-carrier communication for sixth-generation networks. Proc R Soc A 476(2238):20200165 CrossRef
7.
go back to reference Hussein AF, Saha D, Elgala H (2021) Mixed-carrier communication for technology division multiplexing. Electronics 10(18):2248 CrossRef Hussein AF, Saha D, Elgala H (2021) Mixed-carrier communication for technology division multiplexing. Electronics 10(18):2248 CrossRef
8.
go back to reference O’shea T, Hoydis J (2017) An introduction to deep learning for the physical layer. IEEE Trans Cognit Commun Network 3(4):563–575 CrossRef O’shea T, Hoydis J (2017) An introduction to deep learning for the physical layer. IEEE Trans Cognit Commun Network 3(4):563–575 CrossRef
9.
go back to reference Pachpande PG, Khadr MH, Hussien H, Elgala H, Saha D (2019) Autoencoder model for OFDM-based optical wireless communication. In: Signal processing in photonic communications. Optical society of America, pp SpT2E–3 Pachpande PG, Khadr MH, Hussien H, Elgala H, Saha D (2019) Autoencoder model for OFDM-based optical wireless communication. In: Signal processing in photonic communications. Optical society of America, pp SpT2E–3
10.
go back to reference Wu N, Wang X, Lin B, Zhang K (2019) A CNN-based end-to-end learning framework toward intelligent communication systems. IEEE Access 7:110 197-110 204 Wu N, Wang X, Lin B, Zhang K (2019) A CNN-based end-to-end learning framework toward intelligent communication systems. IEEE Access 7:110 197-110 204
11.
go back to reference Gomes SBF, Yacoub MD CNN-based learning system in a generalized fading environment Gomes SBF, Yacoub MD CNN-based learning system in a generalized fading environment
12.
go back to reference Skrobek D, Krzywanski J, Sosnowski M, Kulakowska A, Zylka A, Grabowska K, Ciesielska K, Nowak W (2022) Implementation of deep learning methods in prediction of adsorption processes. Adv Eng Softw 173:103190 CrossRef Skrobek D, Krzywanski J, Sosnowski M, Kulakowska A, Zylka A, Grabowska K, Ciesielska K, Nowak W (2022) Implementation of deep learning methods in prediction of adsorption processes. Adv Eng Softw 173:103190 CrossRef
13.
go back to reference Krzywanski J, Sztekler K, Bugaj M, Kalawa W, Grabowska K, Chaja PR, Sosnowski M, Nowak W, Mika L, Bykuć S (2021) Adsorption chiller in a combined heating and cooling system: simulation and optimization by neural networks. Bull Pol Acad Sci Tech Sci 69(3):e137054 Krzywanski J, Sztekler K, Bugaj M, Kalawa W, Grabowska K, Chaja PR, Sosnowski M, Nowak W, Mika L, Bykuć S (2021) Adsorption chiller in a combined heating and cooling system: simulation and optimization by neural networks. Bull Pol Acad Sci Tech Sci 69(3):e137054
15.
go back to reference Li Z, Liu F, Yang W, Peng S, Zhou J (2022) A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans Neural Netw Learn Syst 33(12):6999–7019 MathSciNetCrossRef Li Z, Liu F, Yang W, Peng S, Zhou J (2022) A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans Neural Netw Learn Syst 33(12):6999–7019 MathSciNetCrossRef
16.
go back to reference He M, Lei Y, Song H, Hu Z, Pan P, Wang H (2022) A DNN-based decoding scheme for communication transmission system over AWGN channel. In: 2022 international symposium on wireless communication systems (ISWCS), pp 1–6 He M, Lei Y, Song H, Hu Z, Pan P, Wang H (2022) A DNN-based decoding scheme for communication transmission system over AWGN channel. In: 2022 international symposium on wireless communication systems (ISWCS), pp 1–6
17.
go back to reference Wu N, Wang X, Lin B, Zhang K (2019) A CNN-based end-to-end learning framework toward intelligent communication systems. IEEE Access 7:197–204 Wu N, Wang X, Lin B, Zhang K (2019) A CNN-based end-to-end learning framework toward intelligent communication systems. IEEE Access 7:197–204
18.
go back to reference Xia H, Alshathri K, Lawrence VB, Yao Y-D, Montalvo A, Rauchwerk M, Cupo R (2019) Cellular signal identification using convolutional neural networks: AWGN and Rayleigh fading channels. In: 2019 IEEE international symposium on dynamic spectrum access networks (DySPAN), pp 1–5 Xia H, Alshathri K, Lawrence VB, Yao Y-D, Montalvo A, Rauchwerk M, Cupo R (2019) Cellular signal identification using convolutional neural networks: AWGN and Rayleigh fading channels. In: 2019 IEEE international symposium on dynamic spectrum access networks (DySPAN), pp 1–5
19.
go back to reference Ahmad R, Soltani MD, Safari M, Srivastava A (2021) Reinforcement learning-based near-optimal load balancing for heterogeneous Lifi Wifi network. IEEE Syst J Ahmad R, Soltani MD, Safari M, Srivastava A (2021) Reinforcement learning-based near-optimal load balancing for heterogeneous Lifi Wifi network. IEEE Syst J
20.
go back to reference Leung VW, Cui L, Alluri S, Lee J, Huang J, Mok E, Shellhammer S, Rao R, Asbeck P, Mercier PP, et al. (2019) Distributed microscale brain implants with wireless power transfer and MBPS bi-directional networked communications. In: 2019 IEEE custom integrated circuits conference (CICC). IEEE, pp 1–4 Leung VW, Cui L, Alluri S, Lee J, Huang J, Mok E, Shellhammer S, Rao R, Asbeck P, Mercier PP, et al. (2019) Distributed microscale brain implants with wireless power transfer and MBPS bi-directional networked communications. In: 2019 IEEE custom integrated circuits conference (CICC). IEEE, pp 1–4
21.
go back to reference Ouda MH, Penty R, Crisp M (2021) Enhanced PWM backscattering system for battery-free wireless sensors. In: 2021 IEEE MTT-S international microwave symposium (IMS). IEEE, pp 274–277 Ouda MH, Penty R, Crisp M (2021) Enhanced PWM backscattering system for battery-free wireless sensors. In: 2021 IEEE MTT-S international microwave symposium (IMS). IEEE, pp 274–277
22.
23.
go back to reference Ahmad R, Soltani MD, Safari M, Srivastava A, Das A (2020) Reinforcement learning based load balancing for hybrid Lifi Wifi networks. IEEE Access 8:273–284 CrossRef Ahmad R, Soltani MD, Safari M, Srivastava A, Das A (2020) Reinforcement learning based load balancing for hybrid Lifi Wifi networks. IEEE Access 8:273–284 CrossRef
24.
go back to reference Xu L, Wang J, Li X, Cai F, Tao Y, Gulliver TA (2021) Performance analysis and prediction for mobile internet-of-things (IoT) networks: a CNN approach. IEEE Internet Things J 8(17):355–366 CrossRef Xu L, Wang J, Li X, Cai F, Tao Y, Gulliver TA (2021) Performance analysis and prediction for mobile internet-of-things (IoT) networks: a CNN approach. IEEE Internet Things J 8(17):355–366 CrossRef
25.
go back to reference Hermawan AP, Ginanjar RR, Kim D-S, Lee J-M (2020) CNN-based automatic modulation classification for beyond 5g communications. IEEE Commun Lett 24(5):1038–1041 CrossRef Hermawan AP, Ginanjar RR, Kim D-S, Lee J-M (2020) CNN-based automatic modulation classification for beyond 5g communications. IEEE Commun Lett 24(5):1038–1041 CrossRef
26.
go back to reference An Y, Wang S, Zhao L, Ji Z, Ganchev I (2023) A learning-based end-to-end wireless communication system utilizing a deep neural network channel module. IEEE Access, pp 1–1 An Y, Wang S, Zhao L, Ji Z, Ganchev I (2023) A learning-based end-to-end wireless communication system utilizing a deep neural network channel module. IEEE Access, pp 1–1
27.
go back to reference Ye H, Li GY, Juang B-H (2021) Deep learning based end-to-end wireless communication systems without pilots. IEEE Trans Cognit Commun Netw 7(3):702–714 CrossRef Ye H, Li GY, Juang B-H (2021) Deep learning based end-to-end wireless communication systems without pilots. IEEE Trans Cognit Commun Netw 7(3):702–714 CrossRef
Metadata
Title
Performance analysis of neural network-based unified physical layer for indoor hybrid LiFi–WiFi flying networks
Authors
Dil Nashin Anwar
Rizwana Ahmad
Haythem Bany Salameh
Hany Elgala
Moussa Ayyash
Publication date
22-09-2023
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 34/2023
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-023-09017-7

Other articles of this Issue 34/2023

Neural Computing and Applications 34/2023 Go to the issue

Premium Partner