Skip to main content
Top
Published in:

01-02-2025

Performance comparison between current-mode signaling and voltage-mode signaling for multilayer graphene nanoribbon (MLGNR) interconnects

Authors: Fa Zou, Zhongliang Pan, Peng Xu

Published in: Journal of Computational Electronics | Issue 1/2025

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Graphene nanoribbon (GNR) is emerging as a superior material for nanometer-scale interconnects, offering superior performance compared with traditional copper materials. To date, most research on GNR interconnects has focused on voltage-mode signaling (VMS) scheme, with little study on current-mode signaling (CMS) scheme. In this paper, we propose an equivalent circuit model of two-wire coupled multilayer graphene nanoribbon (MLGNR) interconnects using VMS and CMS schemes. Moreover, the model takes into account influence of temperature effect, coupling capacitive and mutual inductive. Performance of victim wire in two-wire coupled MLGNR and Copper (Cu) interconnects using VMS and CMS signaling schemes is investigated by applying the decoupling approach and ABCD parameter matrix method at local, intermediate, and global levels, respectively. In addition, the performance of MLGNR and Cu interconnects employing VMS and CMS systems is thoroughly compared and examined in this research. The results reveal that interconnects adopting the CMS scheme have less output voltage swing, less crosstalk delay, greater 3-dB bandwidth, and better signal integrity, compared to interconnects applying the VMS scheme, under the same conditions. With respect to noise, we observe that the CMS scheme has lower noise amplitude, smaller noise peak, and smaller noise width, resulting in greater noise immunity. Moreover, it is manifested that crosstalk delay, noise width, and 3 dB bandwidth are all temperature-dependent. As the temperature rises, both the delay and noise width increase, while the bandwidth decreases. In addition, the results indicate that MLGNR interconnects exhibit lower crosstalk delay, narrower noise width, larger bandwidth, and smaller dynamic power consumption compared to Cu interconnects under the same conditions. Furthermore, we discuss performance optimization methods for interconnects using both VMS and CMS schemes. Also, it is discovered that there is great agreement between the results of HSPICE simulations and those produced by the ABCD parameter matrix technique.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhao, W.S., Cheng, Z.H., Wang, J., et al.: Vertical graphene nanoribbon interconnects at the end of the roadmap. IEEE Trans. Electron Devices 65, 2632–2637 (2018)MATH Zhao, W.S., Cheng, Z.H., Wang, J., et al.: Vertical graphene nanoribbon interconnects at the end of the roadmap. IEEE Trans. Electron Devices 65, 2632–2637 (2018)MATH
2.
go back to reference Zhao, W.S., Wang, D.W., Wang, G., et al.: Electrical modeling of on-chip Cu-graphene heterogeneous interconnects. IEEE Electron Device Lett. 36, 74–76 (2015)MATH Zhao, W.S., Wang, D.W., Wang, G., et al.: Electrical modeling of on-chip Cu-graphene heterogeneous interconnects. IEEE Electron Device Lett. 36, 74–76 (2015)MATH
3.
go back to reference Qian, L.B., Xia, Y.S., Shi, G.: Study of crosstalk effect on the propagation characteristics of coupled MLGNR interconnects. IEEE Trans. Nanotechnol. 15, 810–819 (2016)MATH Qian, L.B., Xia, Y.S., Shi, G.: Study of crosstalk effect on the propagation characteristics of coupled MLGNR interconnects. IEEE Trans. Nanotechnol. 15, 810–819 (2016)MATH
4.
go back to reference Sidhu, R., Rai, M.K.: Scattering-induced circuit modelling and performance analysis of coupled hybrid Interconnections: Sub-threshold performance evaluation. Micro Nanostruct 185, 207707 (2024) Sidhu, R., Rai, M.K.: Scattering-induced circuit modelling and performance analysis of coupled hybrid Interconnections: Sub-threshold performance evaluation. Micro Nanostruct 185, 207707 (2024)
5.
go back to reference Upadhyay, A., Rai, M.K., Khanna, R.: High-frequency characteristics of multilayer graphene nanoribbon interconnects: exploring the implications OF SKIN effect. Micro Nanostruct 189, 207822 (2024)MATH Upadhyay, A., Rai, M.K., Khanna, R.: High-frequency characteristics of multilayer graphene nanoribbon interconnects: exploring the implications OF SKIN effect. Micro Nanostruct 189, 207822 (2024)MATH
6.
go back to reference Zhao, W.S., Yin, W.-Y.: Comparative study on multilayer graphene nanoribbon (MLGNR) interconnects. IEEE Trans. Electromagn. Compat. 56, 638–645 (2014)MATH Zhao, W.S., Yin, W.-Y.: Comparative study on multilayer graphene nanoribbon (MLGNR) interconnects. IEEE Trans. Electromagn. Compat. 56, 638–645 (2014)MATH
7.
go back to reference Sanaeepur, M.: Dielectric surface roughness scattering limited performance of MLGNR interconnects. IEEE Trans. Electromagn. Compat. 61, 532–537 (2019)MATH Sanaeepur, M.: Dielectric surface roughness scattering limited performance of MLGNR interconnects. IEEE Trans. Electromagn. Compat. 61, 532–537 (2019)MATH
8.
go back to reference Naeemi, A., Meindl, J.D.: Compact physics-based circuit models for graphene nanoribbon interconnects. IEEE Trans. Electron Devices 56, 1822–1833 (2009)MATH Naeemi, A., Meindl, J.D.: Compact physics-based circuit models for graphene nanoribbon interconnects. IEEE Trans. Electron Devices 56, 1822–1833 (2009)MATH
9.
go back to reference Li, H., Xu, C., Banerjee, K.: Carbon nanomaterials for next-generation interconnects and passives: Physics, status and prospects. IEEE Trans. Electron Devices 56, 1799–1821 (2009)MATH Li, H., Xu, C., Banerjee, K.: Carbon nanomaterials for next-generation interconnects and passives: Physics, status and prospects. IEEE Trans. Electron Devices 56, 1799–1821 (2009)MATH
10.
go back to reference Xu, C., Li, H., Banerjee, K.: Modeling, analysis, and design of graphene nano-ribbon interconnects. IEEE Trans. Electron Devices 56, 1567–1578 (2009)MATH Xu, C., Li, H., Banerjee, K.: Modeling, analysis, and design of graphene nano-ribbon interconnects. IEEE Trans. Electron Devices 56, 1567–1578 (2009)MATH
11.
go back to reference Gengchiau, L., Neophytos, N., Nikonov, D.E., Lundstrom, M.S.: Performance projections for ballistic graphene nano-ribbon ffeld-effect transistor. IEEE Trans. Electron Devices 54, 677–682 (2007) Gengchiau, L., Neophytos, N., Nikonov, D.E., Lundstrom, M.S.: Performance projections for ballistic graphene nano-ribbon ffeld-effect transistor. IEEE Trans. Electron Devices 54, 677–682 (2007)
12.
go back to reference Xu, P., Pan, Z.L., Tang, Z.: The ultra-low-k dielectric materials for performance improvement in coupled multilayer graphene nanoribbon interconnects. Electronics 8, 849 (2019)MATH Xu, P., Pan, Z.L., Tang, Z.: The ultra-low-k dielectric materials for performance improvement in coupled multilayer graphene nanoribbon interconnects. Electronics 8, 849 (2019)MATH
13.
go back to reference Xu, P., Pan, Z.L.: The analytical model of frequency response and bandwidth for coupled multilayer graphene nanoribbon interconnects. Microelectron. J. 100, 104780 (2020)MATH Xu, P., Pan, Z.L.: The analytical model of frequency response and bandwidth for coupled multilayer graphene nanoribbon interconnects. Microelectron. J. 100, 104780 (2020)MATH
14.
go back to reference Zou, F., Pan, Z.L., Xu, P.: Modeling and performance analysis of coupled multilayer graphene nanoribbon (MLGNR) interconnects with intercalation doping. Microelectron. J. 141, 105971 (2023) Zou, F., Pan, Z.L., Xu, P.: Modeling and performance analysis of coupled multilayer graphene nanoribbon (MLGNR) interconnects with intercalation doping. Microelectron. J. 141, 105971 (2023)
15.
go back to reference Kaur, T., Rai, M.K., Khanna, R.: Effect of temperature on the performance analysis of MLGNR interconnects. J. Comput. Electron. 18, 722–736 (2019)MATH Kaur, T., Rai, M.K., Khanna, R.: Effect of temperature on the performance analysis of MLGNR interconnects. J. Comput. Electron. 18, 722–736 (2019)MATH
16.
go back to reference Kanthamani, S., Gayathiri, G., Rohini, S.: Meshless analysis of bilayer graphene nanoribbon for radio frequency interconnects. Micro & Nano Lett. 10, 613–616 (2015)MATH Kanthamani, S., Gayathiri, G., Rohini, S.: Meshless analysis of bilayer graphene nanoribbon for radio frequency interconnects. Micro & Nano Lett. 10, 613–616 (2015)MATH
17.
go back to reference Naeemi, A., Meindl, J.D.: Conductance modeling for graphene nanoribbon (GNR) interconnects. IEEE Electron Device Lett. 28(5), 428–430 (2007) Naeemi, A., Meindl, J.D.: Conductance modeling for graphene nanoribbon (GNR) interconnects. IEEE Electron Device Lett. 28(5), 428–430 (2007)
18.
go back to reference Sui, Y., Appenzeller, J.: Screening and interlayer coupling in multilayer graphene field effect transistors. Nano Lett. 9(8), 2973–2977 (2009)MATH Sui, Y., Appenzeller, J.: Screening and interlayer coupling in multilayer graphene field effect transistors. Nano Lett. 9(8), 2973–2977 (2009)MATH
19.
go back to reference Kumar, V., Rakheja, S., Naeemi, A.: Performance and energy-per-bit modeling of multilayer graphene nanoribbon conductors. IEEE Trans. Electron Devices 59, 2753–2761 (2012)MATH Kumar, V., Rakheja, S., Naeemi, A.: Performance and energy-per-bit modeling of multilayer graphene nanoribbon conductors. IEEE Trans. Electron Devices 59, 2753–2761 (2012)MATH
20.
go back to reference Cui, J.P., Zhao, W.S., Yin, W.Y., et al.: Signal Transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects. IEEE Trans. Electromagn C. 54(1), 126–132 (2012)MATH Cui, J.P., Zhao, W.S., Yin, W.Y., et al.: Signal Transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects. IEEE Trans. Electromagn C. 54(1), 126–132 (2012)MATH
21.
go back to reference Reddy, K.N., Majumder, M.K., Kaushik, B.K.: Delay uncertainty in MLGNR interconnects under process induced variations of width, doping, dielectric thickness and mean free path. J. Comput. Electron. 13(3), 639–646 (2014)MATH Reddy, K.N., Majumder, M.K., Kaushik, B.K.: Delay uncertainty in MLGNR interconnects under process induced variations of width, doping, dielectric thickness and mean free path. J. Comput. Electron. 13(3), 639–646 (2014)MATH
22.
go back to reference Kumar, V.R., Majumder, M.K., Kukkam, N.R., Kaushik, B.K.: Time and frequency domain analysis of MLGNR interconnects. IEEE Trans. Nanotechnol. 14, 484–492 (2015)MATH Kumar, V.R., Majumder, M.K., Kukkam, N.R., Kaushik, B.K.: Time and frequency domain analysis of MLGNR interconnects. IEEE Trans. Nanotechnol. 14, 484–492 (2015)MATH
23.
go back to reference Qian, L.B., Xia, Y.S., Shi, G., et al.: Stability analysis for coupled multilayer graphene nanoribbon interconnects. Microelectron. J. 58, 32–38 (2016)MATH Qian, L.B., Xia, Y.S., Shi, G., et al.: Stability analysis for coupled multilayer graphene nanoribbon interconnects. Microelectron. J. 58, 32–38 (2016)MATH
24.
go back to reference Sahoo, M., Rahaman, H.: Modeling and analysis of crosstalk induced overshoot/ undershoot effects in multilayer graphene nanoribbon interconnects and its impact on gate oxide reliability. Microelectron. Reliab. 63, 1–8 (2016) Sahoo, M., Rahaman, H.: Modeling and analysis of crosstalk induced overshoot/ undershoot effects in multilayer graphene nanoribbon interconnects and its impact on gate oxide reliability. Microelectron. Reliab. 63, 1–8 (2016)
25.
go back to reference Kaur, M., Gupta, N., Singh, A.K.: Crosstalk analysis of coupled MLGNR interconnects with different types of repeater insertion. Microprocess. Microsyst. 67, 18–27 (2019)MATH Kaur, M., Gupta, N., Singh, A.K.: Crosstalk analysis of coupled MLGNR interconnects with different types of repeater insertion. Microprocess. Microsyst. 67, 18–27 (2019)MATH
26.
go back to reference Akbari, L., Faez, R.: Crosstalk stability analysis in multilayer graphene nanoribbon interconnects. Circ. Syst. Signal Process. 32(6), 2653–2666 (2013)MathSciNetMATH Akbari, L., Faez, R.: Crosstalk stability analysis in multilayer graphene nanoribbon interconnects. Circ. Syst. Signal Process. 32(6), 2653–2666 (2013)MathSciNetMATH
27.
go back to reference Agrawal, Y., Kumar, M.G., Chandel, R.: A novel unified model for copper and MLGNR interconnects using voltage-and current-mode signaling schemes. IEEE Trans. Electromagn C. 59(1), 217–227 (2017)MATH Agrawal, Y., Kumar, M.G., Chandel, R.: A novel unified model for copper and MLGNR interconnects using voltage-and current-mode signaling schemes. IEEE Trans. Electromagn C. 59(1), 217–227 (2017)MATH
28.
go back to reference Yuan, F.: CMOS Current Mode Circuits for Data Communication. Springer, New York, NY, USA (2007)MATH Yuan, F.: CMOS Current Mode Circuits for Data Communication. Springer, New York, NY, USA (2007)MATH
29.
go back to reference Ismail, Y.I., Friedman, E.G.: Effects of inductance on the propagation delay and repeater insertion in VLSI circuits. IEEE Trans. Very Large Scale Integr. Syst. 8, 195–206 (2000)MATH Ismail, Y.I., Friedman, E.G.: Effects of inductance on the propagation delay and repeater insertion in VLSI circuits. IEEE Trans. Very Large Scale Integr. Syst. 8, 195–206 (2000)MATH
30.
go back to reference Agrawal, Y., Chandel, R., Dhiman, R.: Design and analysis of efficient multilevel receiver for current mode interconnect system. In: Proceedings IEEE Students’ Conference on Electrical, Electronics and Computer Science, pp. 1–6. Bhopal, (Mar. 2014) Agrawal, Y., Chandel, R., Dhiman, R.: Design and analysis of efficient multilevel receiver for current mode interconnect system. In: Proceedings IEEE Students’ Conference on Electrical, Electronics and Computer Science, pp. 1–6. Bhopal, (Mar. 2014)
31.
go back to reference Tuuna, S., Nigussie, E., Isoaho, J., Tenhunen, H.: Modeling of energy dissipation in RLC current-mode signalling. IEEE Trans. Very Large Scale Integr. Syst. 20, 1146–1151 (2012)MATH Tuuna, S., Nigussie, E., Isoaho, J., Tenhunen, H.: Modeling of energy dissipation in RLC current-mode signalling. IEEE Trans. Very Large Scale Integr. Syst. 20, 1146–1151 (2012)MATH
32.
go back to reference Agrawal, Y., Chandel, R., Dhiman, R.: High performance current mode receiver design for on-chip VLSI interconnects, chapter 54, Springer Proceedings International Conference on ICA. Series: Advances in Intelligent Systems and Computing, vol. 343, pp. 527–536. (2014) Agrawal, Y., Chandel, R., Dhiman, R.: High performance current mode receiver design for on-chip VLSI interconnects, chapter 54, Springer Proceedings International Conference on ICA. Series: Advances in Intelligent Systems and Computing, vol. 343, pp. 527–536. (2014)
33.
go back to reference Dave, M., Jain, M., Baghini, M.S., Sharma, D.: A variation tolerant current mode signaling scheme for on-chip interconnects. IEEE Trans. Very Large Scale Integr. Syst. 21, 342–353 (2013)MATH Dave, M., Jain, M., Baghini, M.S., Sharma, D.: A variation tolerant current mode signaling scheme for on-chip interconnects. IEEE Trans. Very Large Scale Integr. Syst. 21, 342–353 (2013)MATH
34.
go back to reference Bashirullah, R., Liu, W., Cavin, R.K.: Current-mode signaling in deep submicrometer global interconnects. IEEE Trans Very Large Scale Integr. Syst. 11, 406–417 (2003)MATH Bashirullah, R., Liu, W., Cavin, R.K.: Current-mode signaling in deep submicrometer global interconnects. IEEE Trans Very Large Scale Integr. Syst. 11, 406–417 (2003)MATH
35.
go back to reference Liu, Y.F., Zhao, W.S., Yong, Z., et al.: Electrical modeling of three-dimensional carbon-based heterogeneous interconnects. IEEE Trans. Nanotechnol. 13, 488–495 (2014)MATH Liu, Y.F., Zhao, W.S., Yong, Z., et al.: Electrical modeling of three-dimensional carbon-based heterogeneous interconnects. IEEE Trans. Nanotechnol. 13, 488–495 (2014)MATH
36.
go back to reference Perebeinos, V., Avouris, P.: Inelastic scattering and current saturation in graphene. Phys. Rev. B 81, 195442 (2010) Perebeinos, V., Avouris, P.: Inelastic scattering and current saturation in graphene. Phys. Rev. B 81, 195442 (2010)
37.
go back to reference Rai, M.K., Chatterjee, A.K., Sarkar, S., et al.: Performance analysis of multilayer graphene nanoribbon (MLGNR) interconnects. J. Comput. Electron. 15(2), 358–366 (2016)MATH Rai, M.K., Chatterjee, A.K., Sarkar, S., et al.: Performance analysis of multilayer graphene nanoribbon (MLGNR) interconnects. J. Comput. Electron. 15(2), 358–366 (2016)MATH
38.
go back to reference Stellari, F., Lacaita, A.L.: New formulas of interconnect capacitances based on results of conformal mapping method. IEEE Trans. Electron Devices 47, 222–231 (2000)MATH Stellari, F., Lacaita, A.L.: New formulas of interconnect capacitances based on results of conformal mapping method. IEEE Trans. Electron Devices 47, 222–231 (2000)MATH
39.
go back to reference Duksh, Y.S., Kaushik, B.K., Agarwal, R.P.: FDTD technique-based crosstalk analysis of bundled SWCNT interconnects. J. Semiconduct. 36, 055002 (2015) Duksh, Y.S., Kaushik, B.K., Agarwal, R.P.: FDTD technique-based crosstalk analysis of bundled SWCNT interconnects. J. Semiconduct. 36, 055002 (2015)
40.
go back to reference Tang, Q., Zjajo, A., Berkelaarand, M., Meijs, N.: Considering crosstalk effects in statistical timing analysis. IEEE Trans. Comput.-Aided Design Integr Circuits Syst. 33, 318–322 (2014)MATH Tang, Q., Zjajo, A., Berkelaarand, M., Meijs, N.: Considering crosstalk effects in statistical timing analysis. IEEE Trans. Comput.-Aided Design Integr Circuits Syst. 33, 318–322 (2014)MATH
41.
go back to reference Kumar, V.R., Kaushik, B.K., Patnaik, A.: Crosstalk noise modeling of multiwall carbon nanotube (MWCNT) interconnects using finite-difference time-domain (FDTD) technique. Microelectron. Reliab. 55, 155–163 (2015) Kumar, V.R., Kaushik, B.K., Patnaik, A.: Crosstalk noise modeling of multiwall carbon nanotube (MWCNT) interconnects using finite-difference time-domain (FDTD) technique. Microelectron. Reliab. 55, 155–163 (2015)
42.
go back to reference Zhao, W.S., Wang, G., Hu, J., Sun, L., Hong, H.: Performance and stability analysis of monolayer single-walled carbon nanotube interconnects. Int. J. Numer. Model.: Electron Netw. 28, 456–464 (2015)MATH Zhao, W.S., Wang, G., Hu, J., Sun, L., Hong, H.: Performance and stability analysis of monolayer single-walled carbon nanotube interconnects. Int. J. Numer. Model.: Electron Netw. 28, 456–464 (2015)MATH
43.
go back to reference Sahoo, M., Rahaman, H.: Modeling of crosstalk induced effects in copper-based Nano interconnects: an ABCD parameter matrix-based approach. J. Circ. Syst. Comput. 24, 1540007-1–1541540 (2015)MATH Sahoo, M., Rahaman, H.: Modeling of crosstalk induced effects in copper-based Nano interconnects: an ABCD parameter matrix-based approach. J. Circ. Syst. Comput. 24, 1540007-1–1541540 (2015)MATH
44.
go back to reference Zhang, J., Friedman, E.G.: Decoupling technique and crosstalk analysis for coupled RLC interconnects. In: Proceedings IEEE International Symposium on Circuits and Systems, pp. 521–524. Vancouver, BC, Canada (2004) Zhang, J., Friedman, E.G.: Decoupling technique and crosstalk analysis for coupled RLC interconnects. In: Proceedings IEEE International Symposium on Circuits and Systems, pp. 521–524. Vancouver, BC, Canada (2004)
45.
go back to reference Cheng, Z.H., Zhao, W.S., Wang, D.W., Wang, G., Dong, L.X., Wang, G.F.: Modelling and delay analysis of on-chip differential carbon nanotube interconnects. Micro & Nano Lett. 14, 505–510 (2019)MATH Cheng, Z.H., Zhao, W.S., Wang, D.W., Wang, G., Dong, L.X., Wang, G.F.: Modelling and delay analysis of on-chip differential carbon nanotube interconnects. Micro & Nano Lett. 14, 505–510 (2019)MATH
46.
go back to reference Chandrakasan, A.P., Brodersen, R.W.: Minimizing power consumption in digital CMOS circuits. Proc. IEEE 83, 498–523 (1995)MATH Chandrakasan, A.P., Brodersen, R.W.: Minimizing power consumption in digital CMOS circuits. Proc. IEEE 83, 498–523 (1995)MATH
47.
go back to reference Kaushik, B.K., Sarkar, S., Agarwal, R.P.: Terminating load dependent width optimization of global inductive VLSI interconnects. In: Proceedings IEEE Symposium Emerging Technologies, pp. 301–305. IEEE, Islamabad, Pakistan (2005) Kaushik, B.K., Sarkar, S., Agarwal, R.P.: Terminating load dependent width optimization of global inductive VLSI interconnects. In: Proceedings IEEE Symposium Emerging Technologies, pp. 301–305. IEEE, Islamabad, Pakistan (2005)
48.
go back to reference Karimi, R., Moaiyeri, M.H., Gharavi Hamedani, S.: An ultra-energy-efficient crosstalk-immune interconnect architecture based on multilayer graphene nanoribbons for deep-nanometer technologies. J. Comput. Electron. 20, 1411–1421 (2021) Karimi, R., Moaiyeri, M.H., Gharavi Hamedani, S.: An ultra-energy-efficient crosstalk-immune interconnect architecture based on multilayer graphene nanoribbons for deep-nanometer technologies. J. Comput. Electron. 20, 1411–1421 (2021)
49.
go back to reference Zhao, W., Li, X., Gu, S., Kang, S.H., Nowak, M.M., Cao, Y.: Field-based capacitance modeling for sub-65-nm on-chip interconnect. IEEE Trans. Electron. Dev. 56, 1862–1872 (2009)MATH Zhao, W., Li, X., Gu, S., Kang, S.H., Nowak, M.M., Cao, Y.: Field-based capacitance modeling for sub-65-nm on-chip interconnect. IEEE Trans. Electron. Dev. 56, 1862–1872 (2009)MATH
50.
go back to reference Cheng, Z.H., Zhao, W.S., Wang, D.W., Wang, J., Dong, L.X., Wang, G.F.: Analysis of Cu-graphene interconnects. IEEE Access 6, 53499–53508 (2018)MATH Cheng, Z.H., Zhao, W.S., Wang, D.W., Wang, J., Dong, L.X., Wang, G.F.: Analysis of Cu-graphene interconnects. IEEE Access 6, 53499–53508 (2018)MATH
51.
go back to reference Odaira, T., Yokoshima, N., Yoshihara, I., Yasunaga, M.: Evolutionary design of high signal integrity interconnection based on eye-diagram. Artif. Life Robot. 23, 298–303 (2018) Odaira, T., Yokoshima, N., Yoshihara, I., Yasunaga, M.: Evolutionary design of high signal integrity interconnection based on eye-diagram. Artif. Life Robot. 23, 298–303 (2018)
52.
go back to reference Liang, F., Wang, G., Lin, H.: Modeling of crosstalk effects in multi-wall carbon nanotube interconnects. IEEE Trans. Electromagn. Compat. 54, 133–139 (2012)MATH Liang, F., Wang, G., Lin, H.: Modeling of crosstalk effects in multi-wall carbon nanotube interconnects. IEEE Trans. Electromagn. Compat. 54, 133–139 (2012)MATH
53.
go back to reference Sahoo, M., Ghosal, P., Rahman, H.: Modeling and analysis of crosstalk induced effects in multiwalled carbon nanotube bundle interconnects: an ABCD parameter-based approach. IEEE Trans. Nanotechnol. 14, 259–274 (2015) Sahoo, M., Ghosal, P., Rahman, H.: Modeling and analysis of crosstalk induced effects in multiwalled carbon nanotube bundle interconnects: an ABCD parameter-based approach. IEEE Trans. Nanotechnol. 14, 259–274 (2015)
54.
go back to reference Kumari, B., Sahoo, M.: Performance and power optimization for intercalation doped multilayer graphene nanoribbon interconnects. IETE J. Res. 68, 722–731 (2022)MATH Kumari, B., Sahoo, M.: Performance and power optimization for intercalation doped multilayer graphene nanoribbon interconnects. IETE J. Res. 68, 722–731 (2022)MATH
55.
go back to reference Upadhyay, A., Rai, M.K., Khanna, R.: Analysis of multilayer graphene nanoribbon interconnects constrained by structural edge roughness and corrugated surface dielectric. Phys. Status Solidi A 219, 2200431 (2022)MATH Upadhyay, A., Rai, M.K., Khanna, R.: Analysis of multilayer graphene nanoribbon interconnects constrained by structural edge roughness and corrugated surface dielectric. Phys. Status Solidi A 219, 2200431 (2022)MATH
56.
go back to reference Mudavath, R., Naik, B.R., Raj, J.P.: Evaluation and reduction of signal integrity issues in multiwalled carbon nanotube on-chip VLSI interconnects. ECS J. Solid State Sci. Technol. 10, 081008 (2021) Mudavath, R., Naik, B.R., Raj, J.P.: Evaluation and reduction of signal integrity issues in multiwalled carbon nanotube on-chip VLSI interconnects. ECS J. Solid State Sci. Technol. 10, 081008 (2021)
57.
go back to reference Wensheng, Z., Mengjiao, Y., Xiang, W., Dawei, W.: Circuit modeling and performance analysis of GNR@SWCNT bundle interconnects. Chinese J. Electron. 32, 1271–1277 (2023)MATH Wensheng, Z., Mengjiao, Y., Xiang, W., Dawei, W.: Circuit modeling and performance analysis of GNR@SWCNT bundle interconnects. Chinese J. Electron. 32, 1271–1277 (2023)MATH
58.
go back to reference Liu, P.W., Cheng, Z.H., Zhao, W.S., Lu, Q.J., Zhu, Z.M., Wang, G.F.: Repeater insertion for multi-walled carbon nanotube interconnects. Appl. Sci. 8, 236 (2018)MATH Liu, P.W., Cheng, Z.H., Zhao, W.S., Lu, Q.J., Zhu, Z.M., Wang, G.F.: Repeater insertion for multi-walled carbon nanotube interconnects. Appl. Sci. 8, 236 (2018)MATH
Metadata
Title
Performance comparison between current-mode signaling and voltage-mode signaling for multilayer graphene nanoribbon (MLGNR) interconnects
Authors
Fa Zou
Zhongliang Pan
Peng Xu
Publication date
01-02-2025
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 1/2025
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02274-2