Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

18-05-2020 | Issue 8/2020

Water Resources Management 8/2020

Performance Enhancement Model for Rainfall Forecasting Utilizing Integrated Wavelet-Convolutional Neural Network

Journal:
Water Resources Management > Issue 8/2020
Authors:
Kai Lun Chong, Sai Hin Lai, Yu Yao, Ali Najah Ahmed, Wan Zurina Wan Jaafar, Ahmed El-Shafie
Important notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The core objective of this study is to carry out rainfall forecasting over the Langat River Basin through the integration of wavelet transform (WT) and convolutional neural network (CNN). The proposed method involves using CNN for feature extraction to efficiently learn from the raw rainfall dataset. With the aid of deep architecture, a highly abstracted representation of the inputs time series with a high level of interpretation is formed at each subsequent CNN layer. The use of WT in forecasting the rainfall time series is by preprocessing the raw rainfall dataset into a set of decomposed wavelet components as inputs for the CNN model using discrete wavelet transform (DWT). The conditions for discretizing the raw input through DWT are discussed, along with the criteria to be used. Daily datasets, ranging from January 2002 to December 2017, were used. The results showed that the proposed model could satisfactorily capture patterns of the rainfall time series, for both monthly rainfalls forecasting or daily rainfall forecasting. Three performance indices were used to evaluate the model accuracy: RMSE, RSR, and MAE. These statistical indices have a range of value from 0 to a finite value that depends on the scale of the number used. In general, a lower value is better than a higher one.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 8/2020

Water Resources Management 8/2020 Go to the issue