Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Photonic Network Communications 2/2021

29-08-2021 | Original Paper

Performance enhancement of 8\(\times\)8 dilated banyan network using crosstalk suppressed GMZI crossbar photonic switches

Authors: M. Mubarak Ali, G. Madhupriya, R. Indhumathi, Pandiyan Krishnamoorthy

Published in: Photonic Network Communications | Issue 2/2021

Login to get access
share
SHARE

Abstract

This article reports a design and analysis of 8\(\times\)8 dilated banyan network using 1\(\times\)2 and 2\(\times\)1 gated Mach−Zehnder interferometric (GMZI) crossbar photonic switches for crosstalk reduction. The GMZI crossbar switches are designed using proton exchanged channel waveguides with single-crystal lithium niobate on insulator. The features of the designed GMZI switches are its broadband operation, low insertion loss, and low crosstalk. These are verified by the numerical experiments using full-vectorial 2D finite-difference beam propagation method and using various figure-of-merits. The OFF-state feature in the proposed 1\(\times\)2 and 2\(\times\)1 GMZI switches provides a crosstalk reduction in the network since the idle switches are configured to be in OFF-state to avoid the crosstalk propagation. We performed a comparative study on 8\(\times\)8 dilated banyan network based on 2\(\times\)2 MZI switches and the proposed GMZI switches. The fully loaded 8\(\times\)8 dilated banyan network with the proposed GMZI switches leads to crosstalk reduction of more than 25 dB, which provide broadband operation over a wavelength range of 1530–1570 nm and 50% reduced footprint against the 2\(\times\)2 MZI-based implementation.
Literature
1.
go back to reference Kogelnik, H.W.: Optical crossbar switching network. US Patent 4,013,000, 22 March 1977 Kogelnik, H.W.: Optical crossbar switching network. US Patent 4,013,000, 22 March 1977
2.
go back to reference Shimoe, T., Hajikano, K., Murakami, K.: Path-independent insertion loss optical space switch. In: Optical Fiber Communication Conference (1987) Shimoe, T., Hajikano, K., Murakami, K.: Path-independent insertion loss optical space switch. In: Optical Fiber Communication Conference (1987)
3.
go back to reference Hinton, H.S., Erickson, J.R., Cloonan, T.J., Tooley, F.A.P., McCormick, F.B., Lentine, A.L.: An Introduction to Photonic Switching Fabrics. Springer, New York (1993) CrossRef Hinton, H.S., Erickson, J.R., Cloonan, T.J., Tooley, F.A.P., McCormick, F.B., Lentine, A.L.: An Introduction to Photonic Switching Fabrics. Springer, New York (1993) CrossRef
4.
go back to reference Reinhorn, S., Amitai, Y., Friesem, A.A., Lohmann, A.W., Gorodeisky, S.: Compact optical crossbar switch. Appl. Opt. 36(5), 1039 (1997) CrossRef Reinhorn, S., Amitai, Y., Friesem, A.A., Lohmann, A.W., Gorodeisky, S.: Compact optical crossbar switch. Appl. Opt. 36(5), 1039 (1997) CrossRef
5.
go back to reference Pomportsis, A.S., Papazoglou, C., Papadimitriou, G.I.: Optical switching: switch fabrics, techniques, and architectures. J. Light. Technol. 21(2), 384 (2003) CrossRef Pomportsis, A.S., Papazoglou, C., Papadimitriou, G.I.: Optical switching: switch fabrics, techniques, and architectures. J. Light. Technol. 21(2), 384 (2003) CrossRef
6.
go back to reference Qiao, C.: A universal analytic model for photonic Banyan networks. IEEE Trans. Commun. 46(10), 1381–1389 (1998) CrossRef Qiao, C.: A universal analytic model for photonic Banyan networks. IEEE Trans. Commun. 46(10), 1381–1389 (1998) CrossRef
7.
go back to reference Yu Li, Yu., Zhang, L.Z., Poon, A.W.: Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [Invited]. Photon. Res. 3, B10–B27 (2015) CrossRef Yu Li, Yu., Zhang, L.Z., Poon, A.W.: Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [Invited]. Photon. Res. 3, B10–B27 (2015) CrossRef
8.
go back to reference Zeqin, L., et al.: High-performance silicon photonic tri-state switch based on balanced nested Mach–Zehnder interferometer. Sci. Rep. 7.1, 1–7 (2017) Zeqin, L., et al.: High-performance silicon photonic tri-state switch based on balanced nested Mach–Zehnder interferometer. Sci. Rep. 7.1, 1–7 (2017)
9.
go back to reference Youssef, M.A., El-Derini, M.N., Aly H.H.: Structure and performance evaluation of a replicated Banyan network based ATM switch. In: Proceedings IEEE International Symposium on Computers and Communications, pp. 258–265 (1999) Youssef, M.A., El-Derini, M.N., Aly H.H.: Structure and performance evaluation of a replicated Banyan network based ATM switch. In: Proceedings IEEE International Symposium on Computers and Communications, pp. 258–265 (1999)
10.
go back to reference Antoniades, N., Roudas, I., Wagner, R.E., Jackel, J., Stern, T.E.: Crosstalk performance of a wavelength selective cross-connect mesh topology, OFC ’98, 61–62, (1998) Antoniades, N., Roudas, I., Wagner, R.E., Jackel, J., Stern, T.E.: Crosstalk performance of a wavelength selective cross-connect mesh topology, OFC ’98, 61–62, (1998)
11.
go back to reference Qian, Y., et al.: Crosstalk optimization in low extinction-ratio switch fabrics. OFC 2014, 1–3 (2014) Qian, Y., et al.: Crosstalk optimization in low extinction-ratio switch fabrics. OFC 2014, 1–3 (2014)
12.
go back to reference Soref, R.: Tutorial: integrated-photonic switching structures. APL Photon. 3, 021101 (2018) CrossRef Soref, R.: Tutorial: integrated-photonic switching structures. APL Photon. 3, 021101 (2018) CrossRef
13.
go back to reference Lee, B.G., Dupuis, N.: Silicon photonic switch fabrics technology and architecture. J. Lightwave Technol. 37(1), 6–20 (2019) CrossRef Lee, B.G., Dupuis, N.: Silicon photonic switch fabrics technology and architecture. J. Lightwave Technol. 37(1), 6–20 (2019) CrossRef
14.
go back to reference Duthie, P.J., Wale, M.J.: 16 \(\times\)16 single chip optical switch array in lithium niobate. Electron. Lett. 27(14), 1265–1266 (1991) CrossRef Duthie, P.J., Wale, M.J.: 16 \(\times\)16 single chip optical switch array in lithium niobate. Electron. Lett. 27(14), 1265–1266 (1991) CrossRef
15.
go back to reference Weis, R.S., Gaylord, T.K.: Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A Solids Surfaces 37(4), 191–203 (1985) CrossRef Weis, R.S., Gaylord, T.K.: Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A Solids Surfaces 37(4), 191–203 (1985) CrossRef
16.
go back to reference Balaji, N., Meetei, T.S., Ali, M.M., Boomadevi, S., Senthilkumar, M., Pandiyan, K.: Generation of nearly flattop ultrabroadband response in a QPM device using phase shifter. J. Light. Technol. 37(3), 845–851 (2019) CrossRef Balaji, N., Meetei, T.S., Ali, M.M., Boomadevi, S., Senthilkumar, M., Pandiyan, K.: Generation of nearly flattop ultrabroadband response in a QPM device using phase shifter. J. Light. Technol. 37(3), 845–851 (2019) CrossRef
17.
go back to reference Wang, C., et al.: Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018) Wang, C., et al.: Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018)
18.
go back to reference Rao, A., et al.: High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz. Opt. Lett. 41(24), 5700 (2016) CrossRef Rao, A., et al.: High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz. Opt. Lett. 41(24), 5700 (2016) CrossRef
19.
go back to reference Bahadori, M., Kar, A., Yang, Y., Lavasani, A., Goddard, L., Gong, S.: High-performance integrated photonics in thin film lithium niobate platform. In: CLEO: QELS_Fundamental Science (2019) Bahadori, M., Kar, A., Yang, Y., Lavasani, A., Goddard, L., Gong, S.: High-performance integrated photonics in thin film lithium niobate platform. In: CLEO: QELS_Fundamental Science (2019)
20.
go back to reference Kaushalram, A., Hegde, G., Talabattula, S.: Parametric analysis and comparative study of multimode waveguides on lithium niobate-on-insulator and silicon-on-insulator platforms. Opt. Eng. 58(10), 1 (2019) CrossRef Kaushalram, A., Hegde, G., Talabattula, S.: Parametric analysis and comparative study of multimode waveguides on lithium niobate-on-insulator and silicon-on-insulator platforms. Opt. Eng. 58(10), 1 (2019) CrossRef
21.
go back to reference Boes, A., Corcoran, B., Chang, L., Bowers, J., Mitchell, A.: Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev. 12(4), 1700256 (2018) CrossRef Boes, A., Corcoran, B., Chang, L., Bowers, J., Mitchell, A.: Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev. 12(4), 1700256 (2018) CrossRef
22.
go back to reference Poberaj, G., Hu, H., Sohler, W., Gunter, P.: Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photon. Rev. 6(4), 488–503 (2012) CrossRef Poberaj, G., Hu, H., Sohler, W., Gunter, P.: Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photon. Rev. 6(4), 488–503 (2012) CrossRef
23.
go back to reference Han, H., Cai, L., Hu, H.: Optical and structural properties of single-crystal lithium niobate thin film. Opt. Mater. (Amst) 42, 47–51 (2015) CrossRef Han, H., Cai, L., Hu, H.: Optical and structural properties of single-crystal lithium niobate thin film. Opt. Mater. (Amst) 42, 47–51 (2015) CrossRef
24.
go back to reference Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A., Loncar, M.: Monolithic ultrahigh-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017) CrossRef Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A., Loncar, M.: Monolithic ultrahigh-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017) CrossRef
25.
go back to reference Honardoost, A., Juneghani, F.A., Safian, R., Fathpour, S.: Towards subterahertz bandwidth ultracompact lithium niobate electrooptic modulators. Opt. Express 27(5), 6495 (2019) CrossRef Honardoost, A., Juneghani, F.A., Safian, R., Fathpour, S.: Towards subterahertz bandwidth ultracompact lithium niobate electrooptic modulators. Opt. Express 27(5), 6495 (2019) CrossRef
26.
go back to reference Cai, L., Mahmoud, A., Piazza, G.: Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications. Opt. Express 27(7), 9794 (2019) CrossRef Cai, L., Mahmoud, A., Piazza, G.: Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications. Opt. Express 27(7), 9794 (2019) CrossRef
27.
go back to reference Cai, L., Kong, R., Wang, Y., Hu, H.: Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film. Opt. Express 23(22), 29211 (2015) CrossRef Cai, L., Kong, R., Wang, Y., Hu, H.: Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film. Opt. Express 23(22), 29211 (2015) CrossRef
28.
go back to reference Tonchev, S., Yordanov, B., Kuneva, M., Savatinova, I., Armenise, M., Passaro, V.: Waveguide Mach–Zehnder intensity modulator produced via proton exchange technology in LiNbO 3. In: Devices Based on Low-Dimensional Semiconductor Structures, pp. 293–296. Springer Netherlands Tonchev, S., Yordanov, B., Kuneva, M., Savatinova, I., Armenise, M., Passaro, V.: Waveguide Mach–Zehnder intensity modulator produced via proton exchange technology in LiNbO 3. In: Devices Based on Low-Dimensional Semiconductor Structures, pp. 293–296. Springer Netherlands
29.
go back to reference Meerasha, M.A., Meetei, T.S., Pandiyan, K.: Design of configurable photonic multiplexer using proton exchanged lithium niobate on insulator. Microw. Opt. Technol. Lett. 62, 3077–3086 (2020) Meerasha, M.A., Meetei, T.S., Pandiyan, K.: Design of configurable photonic multiplexer using proton exchanged lithium niobate on insulator. Microw. Opt. Technol. Lett. 62, 3077–3086 (2020)
30.
go back to reference Wu, R., et al.: Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials 8(11), 910 (2018) CrossRef Wu, R., et al.: Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials 8(11), 910 (2018) CrossRef
31.
go back to reference Ganshin, V.A., Korkishko, Y.N.: Proton exchange in lithium niobate and lithium tantalate single crystals: regularities and specific features. Phys. Status Solidi 119(1), 11–25 (1990) CrossRef Ganshin, V.A., Korkishko, Y.N.: Proton exchange in lithium niobate and lithium tantalate single crystals: regularities and specific features. Phys. Status Solidi 119(1), 11–25 (1990) CrossRef
32.
go back to reference Selvaraja, S.K., Sethi, P.: Review on optical waveguides. In: Emerging Waveguide Technology, vol. 1, p. 95 (2018) Selvaraja, S.K., Sethi, P.: Review on optical waveguides. In: Emerging Waveguide Technology, vol. 1, p. 95 (2018)
33.
go back to reference Janner, D., Tulli, D., García-Granda, M., Belmonte, M., Pruneri, V.: Micro-structured integrated electro-optic LiNbO 3 modulators. Laser Photon. Rev. 3(3), 301–313 (2009) Janner, D., Tulli, D., García-Granda, M., Belmonte, M., Pruneri, V.: Micro-structured integrated electro-optic LiNbO 3 modulators. Laser Photon. Rev. 3(3), 301–313 (2009)
34.
go back to reference Jin, W., Chiang, K.S.: Reconfigurable three-mode converter based on cascaded electro-optic long-period gratings. IEEE J. Sel. Topics Quantum Electron. 26(5), 1–6 (2020) Jin, W., Chiang, K.S.: Reconfigurable three-mode converter based on cascaded electro-optic long-period gratings. IEEE J. Sel. Topics Quantum Electron. 26(5), 1–6 (2020)
35.
go back to reference Gorman, T., Haxha, S.: Design optimization of \(Z\)-cut lithium niobate electrooptic modulator with profiled metal electrodes and waveguides. J. Lightwave Technol. 25(12), 3722–3729 (2007) CrossRef Gorman, T., Haxha, S.: Design optimization of \(Z\)-cut lithium niobate electrooptic modulator with profiled metal electrodes and waveguides. J. Lightwave Technol. 25(12), 3722–3729 (2007) CrossRef
36.
go back to reference Qiu, W., et al.: Analysis of ultra \(-\)compact waveguide modes in thin film lithium niobate. Appl. Phys. B Lasers Opt. 118(2), 261–267 (2015) CrossRef Qiu, W., et al.: Analysis of ultra \(-\)compact waveguide modes in thin film lithium niobate. Appl. Phys. B Lasers Opt. 118(2), 261–267 (2015) CrossRef
37.
go back to reference Dumais, P.: Optical waveguide termination having a doped, light-absorbing slab. US Patent 10,359,569, July 2019 Dumais, P.: Optical waveguide termination having a doped, light-absorbing slab. US Patent 10,359,569, July 2019
38.
go back to reference Xu, C.L., Huang, W.P., Stern, M.S., Chaudhuri, S.K.: Full-vectorial mode calculations by finite difference method. IEE Proc. Optoelectron. 141(5), 281–286 (1994) CrossRef Xu, C.L., Huang, W.P., Stern, M.S., Chaudhuri, S.K.: Full-vectorial mode calculations by finite difference method. IEE Proc. Optoelectron. 141(5), 281–286 (1994) CrossRef
39.
go back to reference Wang, Y., Chen, Z., Hu, H.: Analysis of waveguides on lithium niobate thin films. Crystals 8(5), 191 (2018) CrossRef Wang, Y., Chen, Z., Hu, H.: Analysis of waveguides on lithium niobate thin films. Crystals 8(5), 191 (2018) CrossRef
40.
go back to reference Han, H., Xiang, B., Lin, T., Chai, G., Ruan, S.: Design and optimization of proton exchanged integrated electro-optic modulators in X-cut lithium niobate thin film. Crystals 9(11), 549 (2019) CrossRef Han, H., Xiang, B., Lin, T., Chai, G., Ruan, S.: Design and optimization of proton exchanged integrated electro-optic modulators in X-cut lithium niobate thin film. Crystals 9(11), 549 (2019) CrossRef
Metadata
Title
Performance enhancement of 88 dilated banyan network using crosstalk suppressed GMZI crossbar photonic switches
Authors
M. Mubarak Ali
G. Madhupriya
R. Indhumathi
Pandiyan Krishnamoorthy
Publication date
29-08-2021
Publisher
Springer US
Published in
Photonic Network Communications / Issue 2/2021
Print ISSN: 1387-974X
Electronic ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-021-00948-6