Skip to main content
Top

2025 | OriginalPaper | Chapter

Performance Evaluation and Validating Design Inputs of Geogrid Reinforced Flexible Pavement Overlying Soft Subgrade: Insights from Laboratory to Field Testing

Authors : Praveen Bodhanam S, Deeraj Kumar Reddy Kambam, Ramu Baadiga

Published in: Proceedings of the 5th International Conference on Transportation Geotechnics (ICTG) 2024, Volume 8

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Conventional stabilization (using cement, lime, etc.) of soft subgrades incurs high project costs and raises environmental concerns. An alternative stabilization technique that can benefit the pavement without compromising design criteria and pavement performance is the foremost instigating aspect for highway industries. Thus, in this study, the on-field existing effective California Bearing Ratio (CBR) equal to 10% was first simulated in the large-scale test chamber. The prepared unstabilized and stabilized pavement base with Polyethylene terephthalate (PET) biaxial geogrid (PET80) (the ultimate tensile strength equal to 80 kN/m in the machine and cross-machine direction) sections were loaded with a static linear hydraulic actuator having a loading capacity of 100 kN for quantifying the benefit. The benefit rendered by geogrid is quantified in terms of Modulus Improvement Factor (MIF), which is used in mechanistic-empirical pavement design guidelines to assess the pavement's overall performance and reduce the use of natural aggregate. The crucial design inputs of MIF value tested at large-scale laboratory level are further validated in the field through conducting static plate load test for the initial design traffic of 150 MSA (Million Standard Axles) and CBR = 10%. The test results indicated a marginal difference in MIF values observed from laboratory and field validation. The MIF values of PET80 reinforced pavement obtained through laboratory and field were 1.96 and 1.89, respectively. Thus, the benefit indicated that the laboratory obtained MIF value was 1.04 times higher than the field. The overall reduction in asphalt and base layer was 38% and 15%, respectively, for MIF value considered in the study.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
6.
go back to reference Berg RR, Christopher BR, Perkins SW (2000) Geosynthetic reinforcement of the aggregate base/subbase courses of pavement structures. In: GMA white Paper II, geosynthetic materials association, Roseville, Minnesota, USA Berg RR, Christopher BR, Perkins SW (2000) Geosynthetic reinforcement of the aggregate base/subbase courses of pavement structures. In: GMA white Paper II, geosynthetic materials association, Roseville, Minnesota, USA
10.
go back to reference Montenelli F, Zhao A, Rimoldi P (1997) Geosynthetic-reinforced pavement system: testing and design. In: Geosynthetics ’97 conference, pp 1–15 Montenelli F, Zhao A, Rimoldi P (1997) Geosynthetic-reinforced pavement system: testing and design. In: Geosynthetics ’97 conference, pp 1–15
13.
go back to reference Kief O, Rajagopal K, Veeraragavan A, Chandramouli S (2011) Modulus improvement factor for geocell-reinforced bases. In: Proceedings geosynthetics, Chennai, India, pp 143–152 Kief O, Rajagopal K, Veeraragavan A, Chandramouli S (2011) Modulus improvement factor for geocell-reinforced bases. In: Proceedings geosynthetics, Chennai, India, pp 143–152
14.
go back to reference AASHTO-R50 (2013) Standard practice for geosynthetic reinforcement of the aggregate base course of flexible pavement structures, standard specifications for transportation materials and methods of sampling testing, thirty-fifth edition, Washington, DC AASHTO-R50 (2013) Standard practice for geosynthetic reinforcement of the aggregate base course of flexible pavement structures, standard specifications for transportation materials and methods of sampling testing, thirty-fifth edition, Washington, DC
15.
go back to reference IRCSP59 (2019) Guidelines for use of geosynthetics in road pavements and associated works. In: The Indian Road Congress, New Delhi IRCSP59 (2019) Guidelines for use of geosynthetics in road pavements and associated works. In: The Indian Road Congress, New Delhi
18.
go back to reference MoRTH (2013) Specifications for road and bridge works. Ministry of Road Transport and Highways, India, New Delhi MoRTH (2013) Specifications for road and bridge works. Ministry of Road Transport and Highways, India, New Delhi
19.
go back to reference IRC:37 (2018) Guidelines for the design of flexible pavements, 4th Revision, Indian Road Congress, India, New Delhi IRC:37 (2018) Guidelines for the design of flexible pavements, 4th Revision, Indian Road Congress, India, New Delhi
20.
go back to reference Ueshita K, Meyerhof GG (1967) Deflection of multilayer soil system. J Soil Mech Found Div ASCE 93(5):257–282 Ueshita K, Meyerhof GG (1967) Deflection of multilayer soil system. J Soil Mech Found Div ASCE 93(5):257–282
22.
go back to reference Cancelli A, Montanelli F, Rimoldi P, Zhao A (1996) Full scale laboratory testing on geosynthetics reinforced paved roads. In: Proceedings of the international symposium on earth reinforcement, Fukuoka/Kyushu, Japan, November, Balkema, pp 573–578 Cancelli A, Montanelli F, Rimoldi P, Zhao A (1996) Full scale laboratory testing on geosynthetics reinforced paved roads. In: Proceedings of the international symposium on earth reinforcement, Fukuoka/Kyushu, Japan, November, Balkema, pp 573–578
Metadata
Title
Performance Evaluation and Validating Design Inputs of Geogrid Reinforced Flexible Pavement Overlying Soft Subgrade: Insights from Laboratory to Field Testing
Authors
Praveen Bodhanam S
Deeraj Kumar Reddy Kambam
Ramu Baadiga
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-8241-3_6