Skip to main content
Top
Published in: Wireless Personal Communications 2/2020

08-05-2020

Performance Evaluation of the Networks with Wi-Fi based TDMA Coexisting with CSMA/CA

Authors: Xiaofan Guo, Sishan Wang, Haiying Zhou, Jun Xu, Yongqing Ling, Jiaqi Cui

Published in: Wireless Personal Communications | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The wireless technology is widely used in industries with timing stringent tasks. However, it lacks of the consideration of the co-channel interference when designing and estimating the performance of the media access strategies. Thus, it is hard to guarantee the real-time and reliable packet transmissions. In this study, we first propose a Wi-Fi based TDMA access scheme to provide the stringent timing and reliability guarantees under the coexistence with the CSMA/CA scheme. Then, we theoretically analyze the delay of the Wi-Fi TDMA scheme and the throughput of the CSMA/CA scheme considering mutual interferences. The effectiveness of the proposed Wi-Fi TDMA scheme is demonstrated by numerous simulation results since the results show that the retransmission times and the average access delay of the TDMA station are small when varying the CSMA/CA packet length, TDMA packet length, TDMA slot length and TDMA duty cycle. The simulation results also show that the analysis TDMA delays are almost the same with the simulation ones which indicate the accuracy of our theoretical analysis models. Additionally, numerous simulations have been done to show the impact of the Wi-Fi TDMA scheme on the typical CSMA/CA scheme by varying the TDMA frame length and the TDMA duty cycle under centralized and distributed slot assignment strategies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Song J., Han S., Mok, A. K. M., Chen D., Lucas M., Nixon M., & Pratt W. (2008) WirelessHART: Applying wireless technology in real-time industrial process control. In IEEE real time and embedded technology and applications symposium (pp. 377–386). Song J., Han S., Mok, A. K. M., Chen D., Lucas M., Nixon M., & Pratt W. (2008) WirelessHART: Applying wireless technology in real-time industrial process control. In IEEE real time and embedded technology and applications symposium (pp. 377–386).
2.
go back to reference Zhang, W., Wei, Y. H., Leng, Q., & Han, S. (2014). A high-speed, real-time mobile gait rehabilitation system. Xrds Crossroads the Acm Magazine for Students, 20(3), 46–51.CrossRef Zhang, W., Wei, Y. H., Leng, Q., & Han, S. (2014). A high-speed, real-time mobile gait rehabilitation system. Xrds Crossroads the Acm Magazine for Students, 20(3), 46–51.CrossRef
3.
go back to reference Tramarin, Federico, Mok, Aloysius K., & Han, Song. (2019). Real-time and reliable industrial control over wireless LANs: Algorithms protocols and future directions. Proceedings of the IEEE, 107(6), 1027–1052.CrossRef Tramarin, Federico, Mok, Aloysius K., & Han, Song. (2019). Real-time and reliable industrial control over wireless LANs: Algorithms protocols and future directions. Proceedings of the IEEE, 107(6), 1027–1052.CrossRef
4.
go back to reference Koutsiamanis, R., Papadopoulos, G. Z., Fafoutis, X., Fiore, J. M. D., Thubert, P., & Montavont, N. (2018). From best effort to deterministic packet delivery for wireless industrial IoT networks. IEEE Transactions on Industrial Informatics, 14(10), 4468–4480.CrossRef Koutsiamanis, R., Papadopoulos, G. Z., Fafoutis, X., Fiore, J. M. D., Thubert, P., & Montavont, N. (2018). From best effort to deterministic packet delivery for wireless industrial IoT networks. IEEE Transactions on Industrial Informatics, 14(10), 4468–4480.CrossRef
5.
go back to reference Wei, Y., Leng, Q., Chen, W., Mok, A. K., & Han, S. (2018). Schedule adaptation for ensuring reliability in RT-WiFi-based networked embedded systems. ACM Transactions on Embedded Computing Systems, 17(5), 1–23.CrossRef Wei, Y., Leng, Q., Chen, W., Mok, A. K., & Han, S. (2018). Schedule adaptation for ensuring reliability in RT-WiFi-based networked embedded systems. ACM Transactions on Embedded Computing Systems, 17(5), 1–23.CrossRef
6.
go back to reference Xu, J., Guo, C., Zhang, H., & Yang, J. (2018). Resource allocation for real-time traffic in unreliable wireless cellular networks. Wireless Networks, 24(5), 1405–1418.CrossRef Xu, J., Guo, C., Zhang, H., & Yang, J. (2018). Resource allocation for real-time traffic in unreliable wireless cellular networks. Wireless Networks, 24(5), 1405–1418.CrossRef
7.
go back to reference ISA100 Committee (2011). ISA-100.11a-2011 Wireless systems for industrial automation: Process control and related applications. ISA100 Committee (2011). ISA-100.11a-2011 Wireless systems for industrial automation: Process control and related applications.
9.
go back to reference Branz F., Pezzutto M., Antonello R, Tramarin F., & Schenato L. (2019). Drive-by-Wi-Fi: Testing 1 kHz control experiments over wireless. In 2019 18th European control conference (ECC), Naples, Italy (pp. 2990–2995). Branz F., Pezzutto M., Antonello R, Tramarin F., & Schenato L. (2019). Drive-by-Wi-Fi: Testing 1 kHz control experiments over wireless. In 2019 18th European control conference (ECC), Naples, Italy (pp. 2990–2995).
10.
go back to reference Rao A., & Stoica I. (2005). An overlay MAC layer for 802.11 networks. In: Proceedings of the 3rd international conference on Mobile systems, applications, and services (pp. 135–148). Rao A., & Stoica I. (2005). An overlay MAC layer for 802.11 networks. In: Proceedings of the 3rd international conference on Mobile systems, applications, and services (pp. 135–148).
11.
go back to reference Leffler S. (2009). TDMA for long distance wireless networks. In Computer laboratory seminar, University of Cambridge (pp. 1–10). Leffler S. (2009). TDMA for long distance wireless networks. In Computer laboratory seminar, University of Cambridge (pp. 1–10).
12.
go back to reference Dhekne A., Uchat N., Raman, B. (2009). Implementation and evaluation of a TDMA MAC for WiFi-based rural mesh networks. In: The 3rd ACM workshop on networked systems for developing regions (pp. 1–6). Dhekne A., Uchat N., Raman, B. (2009). Implementation and evaluation of a TDMA MAC for WiFi-based rural mesh networks. In: The 3rd ACM workshop on networked systems for developing regions (pp. 1–6).
13.
go back to reference Sevani V., Raman B., & Piyush J. (2014). Implementation-based evaluation of a full-fledged multihop TDMA-MAC for WiFi Mesh networks. In: IEEE transactions on mobile computing (Vol. 13, No. 2, pp. 392–406). Sevani V., Raman B., & Piyush J. (2014). Implementation-based evaluation of a full-fledged multihop TDMA-MAC for WiFi Mesh networks. In: IEEE transactions on mobile computing (Vol. 13, No. 2, pp. 392–406).
14.
go back to reference Hussain, I., Sarma, N., & Saikia, D. K. (2014). TDMA MAC protocols for WiFi-based long distance networks: a survey. International Journal of Computer Applications, 94(19), 1–8.CrossRef Hussain, I., Sarma, N., & Saikia, D. K. (2014). TDMA MAC protocols for WiFi-based long distance networks: a survey. International Journal of Computer Applications, 94(19), 1–8.CrossRef
15.
go back to reference Jin, X., Kong, F., Kong, L., Liu, W., & Zeng, P. (2017). Reliability and temporality optimization for multiple coexisting wireless HART networks in industrial environments. IEEE Transactions on Industrial Electronics, 64(8), 6591–6602.CrossRef Jin, X., Kong, F., Kong, L., Liu, W., & Zeng, P. (2017). Reliability and temporality optimization for multiple coexisting wireless HART networks in industrial environments. IEEE Transactions on Industrial Electronics, 64(8), 6591–6602.CrossRef
16.
go back to reference Yang, D., Xu, Y., & Gidlund, M. (2011). Wireless coexistence between IEEE 802.11- and IEEE 802.15.4-based networks: A survey. International Journal of Distributed Sensor Networks, 3, 876–879. Yang, D., Xu, Y., & Gidlund, M. (2011). Wireless coexistence between IEEE 802.11- and IEEE 802.15.4-based networks: A survey. International Journal of Distributed Sensor Networks, 3, 876–879.
17.
go back to reference Bartolomeu, P., Alam, M., Ferreira, J., & Fonseca, J. (2016). Survey on low power real-time wireless MAC protocols. Journal of Network and Computer Applications, 75, 293–316.CrossRef Bartolomeu, P., Alam, M., Ferreira, J., & Fonseca, J. (2016). Survey on low power real-time wireless MAC protocols. Journal of Network and Computer Applications, 75, 293–316.CrossRef
18.
go back to reference Kim, J., Jeon, W., Park, K., & Choi, J. P. (2018). Coexistence of full-duplex-based IEEE 802.15.4 and IEEE 802.11. IEEE Transactions on Industrial Informatics, 14(12), 5389–5399.CrossRef Kim, J., Jeon, W., Park, K., & Choi, J. P. (2018). Coexistence of full-duplex-based IEEE 802.15.4 and IEEE 802.11. IEEE Transactions on Industrial Informatics, 14(12), 5389–5399.CrossRef
19.
go back to reference Sahoo, P., Pattanaik, S., & Wu, S. (2017). A reliable data transmission model for IEEE 802.15.4e enabled wireless sensor network under WiFi interference. Sensors, 17, 1320.CrossRef Sahoo, P., Pattanaik, S., & Wu, S. (2017). A reliable data transmission model for IEEE 802.15.4e enabled wireless sensor network under WiFi interference. Sensors, 17, 1320.CrossRef
20.
go back to reference Chiasserini, C., & Rao, R. R. (2003). Coexistence mechanisms for interference mitigation in the 2.4-GHz ISM band. IEEE Transactions on Wireless Communications, 2(5), 964–975.CrossRef Chiasserini, C., & Rao, R. R. (2003). Coexistence mechanisms for interference mitigation in the 2.4-GHz ISM band. IEEE Transactions on Wireless Communications, 2(5), 964–975.CrossRef
21.
go back to reference Zhang X., & Shin K. G. (2010). Enabling coexistence of heterogeneous wireless systems: Case for ZigBee and WiFi. In MOBIHOC (pp. 1–11). Zhang X., & Shin K. G. (2010). Enabling coexistence of heterogeneous wireless systems: Case for ZigBee and WiFi. In MOBIHOC (pp. 1–11).
22.
go back to reference Guo P., Cao J., Zhang K., & Liu X. (2014). Enhancing ZigBee throughput under WiFi interference using real-time adaptive coding. In IEEE INFOCOM (pp. 2858–2866). Guo P., Cao J., Zhang K., & Liu X. (2014). Enhancing ZigBee throughput under WiFi interference using real-time adaptive coding. In IEEE INFOCOM (pp. 2858–2866).
23.
go back to reference Lee T. H., Hsieh M. C., Chang L. H., Chiang H. S., Wen C. H., & Yap K. M. (2014). Avoiding collisions between IEEE 802.11 and IEEE 802.15.4 using coexistence inter-frame space. In Lecture notes in electrical engineering (vol. 260, pp. 1185–1193). Lee T. H., Hsieh M. C., Chang L. H., Chiang H. S., Wen C. H., & Yap K. M. (2014). Avoiding collisions between IEEE 802.11 and IEEE 802.15.4 using coexistence inter-frame space. In Lecture notes in electrical engineering (vol. 260, pp. 1185–1193).
24.
go back to reference Bhandari, S., & Moh, S. (2016). A priority-based adaptive MAC protocol for wireless body area networks. Sensors, 16(3), 401–416.CrossRef Bhandari, S., & Moh, S. (2016). A priority-based adaptive MAC protocol for wireless body area networks. Sensors, 16(3), 401–416.CrossRef
25.
go back to reference Guan Z., & Melodia T. (2016). CU-LTE: Spectrally-efficient and fair coexistence between LTE and Wi-Fi in unlicensed bands. In IEEE INFOCOM (pp. 1–9). Guan Z., & Melodia T. (2016). CU-LTE: Spectrally-efficient and fair coexistence between LTE and Wi-Fi in unlicensed bands. In IEEE INFOCOM (pp. 1–9).
26.
go back to reference Yun S., Qiu L. (2015). Supporting WiFi and LTE co-existence. In IEEE INFOCOM (pp. 810–818). Yun S., Qiu L. (2015). Supporting WiFi and LTE co-existence. In IEEE INFOCOM (pp. 810–818).
27.
go back to reference Almeida E., Cavalcante A. M., Paiva R., Chaves F., Abinader F., Vieira R., Choudhury S., Tuomaala E., & Doppler K. (2013). Enabling LTE/WiFi coexistence by LTE blank subframe allocation. In IEEE ICC (pp. 5083–5088). Almeida E., Cavalcante A. M., Paiva R., Chaves F., Abinader F., Vieira R., Choudhury S., Tuomaala E., & Doppler K. (2013). Enabling LTE/WiFi coexistence by LTE blank subframe allocation. In IEEE ICC (pp. 5083–5088).
28.
go back to reference Xu Z., Wu Z., Chen F., & Gong Y. (2017). Analyzing the WiFi access probability in LTE-U/WiFi coexistence networks. In IEEE Globecom workshops (GC Wkshps), Singapore (pp. 1–5). Xu Z., Wu Z., Chen F., & Gong Y. (2017). Analyzing the WiFi access probability in LTE-U/WiFi coexistence networks. In IEEE Globecom workshops (GC Wkshps), Singapore (pp. 1–5).
29.
go back to reference Alabdel Abass A. A., Kumbhkar R., Mandayam N. B., & Gajic Z. (2019). WiFi/LTE-U Coexistence: An Evolutionary Game Approach. In IEEE transactions on cognitive communications and networking (vol. 5, no. 1, pp. 44–58). Alabdel Abass A. A., Kumbhkar R., Mandayam N. B., & Gajic Z. (2019). WiFi/LTE-U Coexistence: An Evolutionary Game Approach. In IEEE transactions on cognitive communications and networking (vol. 5, no. 1, pp. 44–58).
30.
go back to reference Rezha, F. P., & Shin, S. Y. (2014). Performance analysis of ISA100.11a under interference from an IEEE 802.11b wireless network. IEEE Transactions on Industrial Informatics, 10(2), 919–927.CrossRef Rezha, F. P., & Shin, S. Y. (2014). Performance analysis of ISA100.11a under interference from an IEEE 802.11b wireless network. IEEE Transactions on Industrial Informatics, 10(2), 919–927.CrossRef
31.
go back to reference Wei Y. (2016). Real-time communication platform for wireless cyber-physical applications. The University of Texas at Austin. Wei Y. (2016). Real-time communication platform for wireless cyber-physical applications. The University of Texas at Austin.
32.
go back to reference Bianchi, G. (2000). Performance analysis of the IEEE802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.CrossRef Bianchi, G. (2000). Performance analysis of the IEEE802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.CrossRef
33.
go back to reference Yazid, M., Ksentini, A., Bouallouche-Medjkoune, L., & Aïssani, D. (2014). Performance Analysis of the TXOP sharing mechanism in the VHT IEEE 802.11 ac WLANs. IEEE Communications Letters, 18(9), 1599–1602.CrossRef Yazid, M., Ksentini, A., Bouallouche-Medjkoune, L., & Aïssani, D. (2014). Performance Analysis of the TXOP sharing mechanism in the VHT IEEE 802.11 ac WLANs. IEEE Communications Letters, 18(9), 1599–1602.CrossRef
34.
go back to reference Hu, Z., Wen, X., Li, Z., Lu, Z., & Jing, W. (2015). Modeling the TXOP sharing mechanism of IEEE 802.11 ac enhanced distributed channel access in non-saturated conditions. IEEE Communications Letters, 19(9), 1576–1579.CrossRef Hu, Z., Wen, X., Li, Z., Lu, Z., & Jing, W. (2015). Modeling the TXOP sharing mechanism of IEEE 802.11 ac enhanced distributed channel access in non-saturated conditions. IEEE Communications Letters, 19(9), 1576–1579.CrossRef
35.
go back to reference Guglielmo D., Anastasi G., & Conti M. (2014). A localized slot allocation algorithm for wireless sensor network. In 12th annual mediterranean ad hoc networking workshop (MED-HOC-NET) (pp. 89–96). Guglielmo D., Anastasi G., & Conti M. (2014). A localized slot allocation algorithm for wireless sensor network. In 12th annual mediterranean ad hoc networking workshop (MED-HOC-NET) (pp. 89–96).
36.
go back to reference Liu, J., Dai, H., & Chen, W. (2015). On throughput maximization of time division multiple access with energy harvesting users. IEEE Transactions on Vehicular Technology, 65(4), 2457–2470.CrossRef Liu, J., Dai, H., & Chen, W. (2015). On throughput maximization of time division multiple access with energy harvesting users. IEEE Transactions on Vehicular Technology, 65(4), 2457–2470.CrossRef
37.
go back to reference Yang H., & Sikdar B. (2007). Performance analysis of polling based TDMA MAC protocols with sleep and wakeup cycles. In ICC (pp. 241–246). Yang H., & Sikdar B. (2007). Performance analysis of polling based TDMA MAC protocols with sleep and wakeup cycles. In ICC (pp. 241–246).
38.
go back to reference Khader O., Willig A., & Wolisz A. (2010). Wireless HART TDMA protocol performance evaluation using response surface methodology. In International conference on broadband and wireless computing, communication and applications (BWCCA) (pp. 197–206). Khader O., Willig A., & Wolisz A. (2010). Wireless HART TDMA protocol performance evaluation using response surface methodology. In International conference on broadband and wireless computing, communication and applications (BWCCA) (pp. 197–206).
Metadata
Title
Performance Evaluation of the Networks with Wi-Fi based TDMA Coexisting with CSMA/CA
Authors
Xiaofan Guo
Sishan Wang
Haiying Zhou
Jun Xu
Yongqing Ling
Jiaqi Cui
Publication date
08-05-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2020
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07447-3

Other articles of this Issue 2/2020

Wireless Personal Communications 2/2020 Go to the issue